RESUMO
The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.
Assuntos
Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes , Epitopos/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , HIV-1 , Interações Hidrofóbicas e Hidrofílicas , Imunoglobulina G/química , Modelos Moleculares , Mutagênese , Conformação Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Neutralizing antibodies (NAbs) to multiple epitopes on the HIV-1-envelope glycoprotein (Env) have been isolated from infected persons. The potency of NAbs is measured more often than the size of the persistent fraction of infectivity at maximum neutralization, which may also influence preventive efficacy of active or passive immunization and the therapeutic outcome of the latter. Many NAbs neutralize HIV-1 CZA97.012, a clone of a Clade-C isolate, to ~100%. But here NAb PGT151, directed to a fusion-peptide epitope, left a persistent fraction of 15%. NAb PGT145, ligating the Env-trimer apex, left no detectable persistent fraction. The divergence in persistent fractions was further analyzed by depletion of pseudoviral populations of the most PGT151- and PGT145-reactive virions. Thereby, neutralization by the non-depleting NAb increased, whereas neutralization by the depleting NAb decreased. Furthermore, depletion by PGT151 increased sensitivity to autologous neutralization by sera from rabbits immunized with soluble native-like CZA97.012 trimer: substantial persistent fractions were reduced. NAbs in these sera target epitopes comprising residue D411 at the V4-ß19 transition in a defect of the glycan shield on CZA97.012 Env. NAb binding to affinity-fractionated soluble native-like CZA97.012 trimer differed commensurately with neutralization in analyses by ELISA and surface plasmon resonance. Glycan differences between PGT151- and PGT145-purified trimer fractions were then demonstrated by mass spectrometry, providing one explanation for the differential antigenicity. These differences were interpreted in relation to a new structure at 3.4-Å resolution of the soluble CZA97.012 trimer determined by cryo-electron microscopy. The trimer adopted a closed conformation, refuting apex opening as the cause of reduced PGT145 binding to the PGT151-purified form. The evidence suggests that differences in binding and neutralization after trimer purification or pseudovirus depletion with PGT145 or PGT151 are caused by variation in glycosylation, and that some glycan variants affect antigenicity through direct effects on antibody contacts, whereas others act allosterically.
Assuntos
Infecções por HIV , HIV-1 , Animais , Coelhos , Anticorpos Anti-HIV , Microscopia Crioeletrônica , Anticorpos Neutralizantes , Epitopos , Antígenos Virais , Polissacarídeos/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência HumanaRESUMO
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
RESUMO
BACKGROUND: Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations. RESULTS: We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes. CONCLUSION: Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.
Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Animais , Coelhos , Anticorpos Anti-HIV , Epitopos , Anticorpos Neutralizantes , Conformação Molecular , Anticorpos Amplamente Neutralizantes , Produtos do Gene env do Vírus da Imunodeficiência HumanaRESUMO
With the much-debated exception of the modestly reduced acquisition reported for the RV144 efficacy trial, HIV-1 vaccines have not protected humans against infection, and a vaccine of similar design to that tested in RV144 was not protective in a later trial, HVTN 702. Similar vaccine regimens have also not consistently protected nonhuman primates (NHPs) against viral acquisition. Conversely, experimental vaccines of different designs have protected macaques from viral challenges but then failed to protect humans, while many other HIV-1 vaccine candidates have not protected NHPs. While efficacy varies more in NHPs than humans, vaccines have failed to protect in the most stringent NHP model. Intense investigations have aimed to identify correlates of protection (CoPs), even in the absence of net protection. Unvaccinated animals and humans vary vastly in their susceptibility to infection and in their innate and adaptive responses to the vaccines; hence, merely statistical associations with factors that do not protect are easily found. Systems biological analyses, including artificial intelligence, have identified numerous candidate CoPs but with no clear consistency within or between species. Proposed CoPs sometimes have only tenuous mechanistic connections to immune protection. In contrast, neutralizing antibodies (NAbs) are a central mechanistic CoP for vaccines that succeed against other viruses, including SARS-CoV-2. No HIV-1 vaccine candidate has yet elicited potent and broadly active NAbs in NHPs or humans, but narrow-specificity NAbs against the HIV-1 isolate corresponding to the immunogen do protect against infection by the autologous virus. Here, we analyze why so many HIV-1 vaccines have failed, summarize the outcomes of vaccination in NHPs and humans, and discuss the value and pitfalls of hunting for CoPs other than NAbs. We contrast the failure to find a consistent CoP for HIV-1 vaccines with the identification of NAbs as the principal CoP for SARS-CoV-2.
Assuntos
Vacinas contra a AIDS , HIV-1 , Vacinas contra a AIDS/normas , Animais , Anticorpos Neutralizantes , Inteligência Artificial , Vacinas contra COVID-19/normas , Interpretação Estatística de Dados , Infecções por HIV/prevenção & controle , Humanos , SARS-CoV-2RESUMO
The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. IMPORTANCE Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.
Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/metabolismo , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/imunologia , Aminoácidos/química , Aminoácidos/imunologia , Aminoácidos/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Antígenos Virais/imunologia , Glicosilação , Anticorpos Anti-HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Imunização , Modelos Moleculares , Conformação Proteica , Multimerização Proteica/imunologia , Coelhos , Deleção de Sequência , Relação Estrutura-Atividade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
The high viral diversity of HIV-1 is a formidable hurdle for the development of an HIV-1 vaccine. Elicitation of broadly neutralizing antibodies (bNAbs) would offer a solution, but so far immunization strategies have failed to efficiently elicit bNAbs. To overcome these obstacles, it is important to understand the immune responses elicited by current HIV-1 envelope glycoprotein (Env) immunogens. To gain more insight, we characterized monoclonal antibodies (MAbs) isolated from rabbits immunized with Env SOSIP trimers based on the clade B isolate AMC008. Four rabbits that were immunized three times with AMC008 trimer developed robust autologous and sporadic low-titer heterologous neutralizing responses. Seventeen AMC008 trimer-reactive MAbs were isolated using antigen-specific single B-cell sorting. Four of these MAbs neutralized the autologous AMC008 virus and several other clade B viruses. When visualized by electron microscopy, the complex of the neutralizing MAbs with the AMC008 trimer showed binding to the gp41 subunit with unusual approach angles, and we observed that their neutralization ability depended on their capacity to induce Env trimer dissociation. Thus, AMC008 SOSIP trimer immunization induced clade B-neutralizing MAbs with unusual approach angles with neutralizing effects that involve trimer destabilization. Optimizing these responses might provide an avenue to the induction of trimer-dissociating bNAbs. IMPORTANCE Roughly 32 million people have died as a consequence of HIV-1 infection since the start of the epidemic, and 1.7 million people still get infected with HIV-1 annually. Therefore, a vaccine to prevent HIV-1 infection is urgently needed. Current HIV-1 immunogens are not able to elicit the broad immune responses needed to provide protection against the large variation of HIV-1 strains circulating globally. A better understanding of the humoral immune responses elicited by immunization with state-of-the-art HIV-1 immunogens should facilitate the design of improved HIV-1 vaccine candidates. We identified antibodies with the ability to neutralize multiple HIV-1 viruses by destabilization of the envelope glycoprotein. Their weak but consistent cross-neutralization ability indicates the potential of this epitope to elicit broad responses. The trimer-destabilizing effect of the neutralizing MAbs, combined with detailed characterization of the neutralization epitope, can be used to shape the next generation of HIV-1 immunogens to elicit improved humoral responses after vaccination.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Glicoproteínas/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Imunização , Multimerização Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
In this review, we address issues that relate to the rapid "Warp Speed" development of vaccines to counter the COVID-19 pandemic. We review the antibody response that is triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of humans and how it may inform vaccine research. The isolation and properties of neutralizing monoclonal antibodies from COVID-19 patients provide additional information on what vaccines should try to elicit. The nature and longevity of the antibody response to coronaviruses are relevant to the potency and duration of vaccine-induced immunity. We summarize the immunogenicity of leading vaccine candidates tested to date in animals and humans and discuss the outcome and interpretation of virus challenge experiments in animals. By far the most immunogenic vaccine candidates for antibody responses are recombinant proteins, which were not included in the initial wave of Warp Speed immunogens. A substantial concern for SARS-CoV-2 vaccines is adverse events, which we review by considering what was seen in studies of SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV) vaccines. We conclude by outlining the possible outcomes of the Warp Speed vaccine program, which range from the hoped-for rapid success to a catastrophic adverse influence on vaccine uptake generally.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , COVID-19 , Vacinas contra COVID-19 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Modelos Animais , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/efeitos adversosRESUMO
We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, â¼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins.IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.
Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito T/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Nanopartículas de Magnetita , Lectina de Ligação a Manose/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Humanos , Camundongos , Multimerização Proteica/imunologiaRESUMO
BACKGROUND: Low initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody titers dropping to undetectable levels within months after infection have raised concerns about long-term immunity. Both the antibody levels and the avidity of the antibody-antigen interaction should be examined to understand the quality of the antibody response. METHODS: A testing-on-a-probe "plus" panel (TOP-Plus) was developed to include a newly developed avidity assay built into the previously described SARS-CoV-2 TOP assays that measured total antibody (TAb), surrogate neutralizing antibody (SNAb), IgM, and IgG on a versatile biosensor platform. TAb and SNAb levels were compared with avidity in previously infected individuals at 1.3 and 6.2 months after infection in paired samples from 80 patients with coronavirus disease 2019 (COVID-19). Sera from individuals vaccinated for SARS-CoV-2 were also evaluated for antibody avidity. RESULTS: The newly designed avidity assay in this TOP panel correlated well with a reference Bio-Layer Interferometry avidity assay (r = 0.88). The imprecision of the TOP avidity assay was <10%. Although TAb and neutralization activity (by SNAb) decreased between 1.3 and 6.2 months after infection, the antibody avidity increased significantly (P < 0.0001). Antibody avidity in 10 SARS-CoV-2 vaccinated individuals (median: 28 days after vaccination) was comparable to the measured antibody avidity in infected individuals (median: 26 days after infection). CONCLUSIONS: This highly precise and versatile TOP-Plus panel with the ability to measure SARS-CoV-2 TAb, SNAb, IgG, and IgM antibody levels and avidity of individual sera on one sensor can become a valuable asset in monitoring not only patients infected with SARS-CoV-2 but also the status of individuals' COVID-19 vaccination response.
Assuntos
Anticorpos Antivirais/sangue , Afinidade de Anticorpos/fisiologia , Técnicas Biossensoriais/métodos , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferometria , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Fatores de Tempo , Adulto JovemRESUMO
Soluble recombinant native-like (NL) envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design, designated BG505 SOSIP.664, incorporates an intersubunit disulfide bond (SOS) to covalently link the gp120 and gp41 ectodomain (gp41ECTO) subunits and a point substitution, I559P (IP), to further stabilize the gp41ECTO components. Without the SOS and IP changes, proteolytically cleaved trimers tend to disintegrate into their constituent gp120 and gp41ECTO subunits. We show, however, that NL trimers lacking the SOS and/or IP change can be affinity purified in amounts sufficient for analyses of their antigenicity and thermal stability. In general, these trimer variants have properties highly comparable to those of the fully stabilized SOSIP.664 version. We conclude that the major effect of the SOS and IP changes is to substantially increase trimer stability during and after the expression process, thereby allowing useful amounts to be produced. However, once the trimers have been purified, the SOS and IP changes have only subtle impacts on thermostability and the antigenicity of bNAb and other epitopes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. One vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. A commonly used design is designated SOSIP.664, a term reflecting the sequence changes that are used to stabilize the trimers and allow their production in practically useful amounts. Here, we show that these stabilizing changes act to increase trimer yield during the biosynthesis process within the producer cell but have little impact on the properties of purified trimers.
Assuntos
Vacinas contra a AIDS/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , HIV-1/genética , Proteínas Recombinantes de Fusão/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Vacinas contra a AIDS/biossíntese , Animais , Anticorpos Neutralizantes/biossíntese , Células CHO , Cricetulus , Dissulfetos/química , Expressão Gênica , Genótipo , Células HEK293 , Anticorpos Anti-HIV/biossíntese , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/classificação , HIV-1/imunologia , Humanos , Mutação Puntual , Domínios Proteicos , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Temperatura , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
In HIV-1 vaccine research, native-like, soluble envelope glycoprotein SOSIP trimers are widely used for immunizing animals. The epitopes of autologous neutralizing antibodies (NAbs) induced by the BG505 and B41 SOSIP trimers in rabbits and macaques have been mapped to a few holes in the glycan shields that cover most of the protein surfaces. For BG505 trimers, the dominant autologous NAb epitope in rabbits involves residues that line a cavity caused by the absence of a glycan at residue 241. Here, we blocked this epitope in BG505 SOSIPv4.1 trimer immunogens by knocking in an N-linked glycan at residue 241. We then opened holes elsewhere on the trimer by knocking out single N-linked glycans at residues 197, 234, 276, 332, and 355 and found that NAb responses induced by the 241-glycan-bearing BG505 trimers were frequently redirected to the newly opened sites. The strongest evidence for redirection of the NAb response to neoepitopes, through the opening and closing of glycan holes, was obtained from trimer immunogen groups with the highest occupancy of the N241 site. We also attempted to knock in the N289-glycan to block the sole autologous NAb epitope on the B41 SOSIP.v4.1 trimer. Although a retrospective analysis showed that the new N289-glycan site was substantially underoccupied, we found some evidence for redirection of the NAb response to a neoepitope when this site was knocked in and the N356-glycan site knocked out. In neither study, however, was redirection associated with increased neutralization of heterologous tier 2 viruses.IMPORTANCE Engineered SOSIP trimers mimic envelope-glycoprotein spikes, which stud the surface of HIV-1 particles and mediate viral entry into cells. When used for immunizing test animals, they elicit antibodies that neutralize resistant sequence-matched HIV-1 isolates. These neutralizing antibodies recognize epitopes in holes in the glycan shield that covers the trimer. Here, we added glycans to block the most immunogenic neutralization epitopes on BG505 and B41 SOSIP trimers. In addition, we removed selected other glycans to open new holes that might expose new immunogenic epitopes. We immunized rabbits with the various glycan-modified trimers and then dissected the specificities of the antibody responses. Thus, in principle, the antibody response might be diverted from one site to a more cross-reactive one, which would help in the induction of broadly neutralizing antibodies by HIV-1 vaccines based on envelope glycoproteins.
Assuntos
Anticorpos Neutralizantes/imunologia , Glicoproteínas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Animais , Formação de Anticorpos , Antígenos Virais/imunologia , Epitopos/imunologia , Feminino , Glicoproteínas/metabolismo , Anticorpos Anti-HIV/imunologia , Infecções por HIV/virologia , HIV-1/metabolismo , Imunização , Polissacarídeos/metabolismo , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Immune complex (IC) vaccines have been successfully used to increase immune responses against various pathogens, including HIV-1. Additionally, IC vaccines can induce qualitatively different antibody responses, with distinct antigenic specificities compared to the same antigens used alone. Here we measured the HIV-1-specific antibody responses in female New Zealand White rabbits after immunization with ICs made from BG505 SOSIP.664 trimers (BG505 trimers) and three rabbit monoclonal antibodies (MAbs) with different neutralization profiles. Two of the MAbs were specific for a hole in the glycan shield of the BG505 trimer, while the third, which bound less avidly, was specific for determinants at the gp41-gp120 interface. We found that immunization with one of the glycan-hole-specific ICs resulted in lower levels of trimer-binding antibodies compared to vaccination with the uncomplexed trimer, and that ICs made using either of the glycan-hole-specific MAbs resulted in lower rates of anti-trimer antibody decay. We concluded that ICs based on MAbs that bound to the immunodominant glycan hole epitope likely diverted antibody responses, to some extent, away from this site and to other regions of the trimer. However, this outcome was not accompanied by a widening of the breadth or an increase in the potency of neutralizing antibody responses compared with uncomplexed trimers.IMPORTANCE Immunodominant epitopes may suppress immune responses to more desirable determinants, such as those that elicit potentially protective neutralizing antibody responses. To overcome this problem, we attempted to mask immunodominant glycan holes by immunizing rabbits with ICs consisting of the BG505 SOSIP.664 gp140 trimer and MAbs that targeted the glycan holes. We found that IC vaccination likely diverted antibody responses, to some extent, away from the glycan holes and toward other regions of the trimer. IC vaccination resulted in slower decay of HIV-1-specific antibodies than did immunization with uncomplexed trimer. We did not observe a widening of the breadth or an increase in the potency of neutralizing antibody responses compared to uncomplexed trimers. Our results suggest that selective epitope dampening of BG505 trimers by ICs is rather ineffective. However, IC vaccination may represent a novel means of increasing the duration of vaccine-induced antibody responses.
Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/química , Animais , Anticorpos Neutralizantes/imunologia , Complexo Antígeno-Anticorpo/química , Epitopos , Anticorpos Anti-HIV/química , Imunização , Ligação Proteica , Multimerização Proteica , Coelhos , Vacinação , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
The native-like, soluble SOSIP.664 trimer based on the BG505 clade A env gene of HIV-1 is immunogenic in various animal species, of which the most studied are rabbits and rhesus macaques. The trimer induces autologous neutralizing antibodies (NAbs) consistently but at a wide range of titers and with incompletely determined specificities. A precise delineation of immunogenic neutralization epitopes on native-like trimers could help strategies to extend the NAb response to heterologous HIV-1 strains. One autologous NAb epitope on the BG505 Env trimer is known to involve residues lining a hole in the glycan shield that is blocked by adding a glycan at either residue 241 or 289. This glycan-hole epitope accounts for the NAb response of most trimer-immunized rabbits but not for that of a substantial subset. Here, we have used a large panel of mutant BG505 Env-pseudotyped viruses to define additional sites. A frequently immunogenic epitope in rabbits is blocked by adding a glycan at residue 465 near the junction of the gp120 V5 loop and ß24 strand and is influenced by amino-acid changes in the structurally nearby C3 region. We name this new site the "C3/465 epitope". Of note is that the C3 region was under selection pressure in the infected infant from whom the BG505 virus was isolated. A third NAb epitope is located in the V1 region of gp120, although it is rarely immunogenic. In macaques, NAb responses induced by BG505 SOSIP trimers are more often directed at the C3/465 epitope than the 241/289-glycan hole.
Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/análise , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/imunologia , Vacinas contra a AIDS/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Formação de Anticorpos , Epitopos/imunologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/terapia , Macaca mulatta , Multimerização Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Native-like, soluble, recombinant SOSIP trimers of various designs and based on several env genes of human immunodeficiency virus type 1 (HIV-1) are being tested as immunogens in different animal models. These experiments almost always involve coformulating the trimers with an adjuvant to boost the magnitude of the immune responses. One factor relevant to the choice of an adjuvant is that it should not physically damage the immunogen or impede its ability to present relevant epitopes. As examples, an adjuvant formulation that includes harsh detergents could disrupt the structural integrity of a trimer, and any charged compounds in the formulation could bind to countercharged regions of the trimer and physically occlude nearby epitopes. While a few adjuvants have been tested for their potential effects on SOSIP trimers in vitro, there has been no systematic study. Here, we have assessed how nine different adjuvants of various compositions affect SOSIP trimers of the BG505 and B41 genotypes. We used negative-stain electron microscopy, thermal denaturation, and gel electrophoresis to evaluate effects on trimer integrity and immunoassays to measure effects on the presentation of various epitopes. We conclude that most of the tested adjuvants are benign from these perspectives, but some raise grounds for concern. An acidified alum formulation is highly disruptive to trimer integrity, and a DNA-based polyanionic CpG oligodeoxynucleotide adjuvant binds to trimers and occludes the trimer apex epitope for the PGT145 neutralizing antibody. The methods described here should be generalizable to protein subunit vaccines targeting various pathogens.IMPORTANCE Adjuvant formulations increase the magnitude of immune responses to vaccine antigens. They are critically important for formulation of HIV-1 envelope glycoprotein (Env) vaccines intended to induce antibody production, as Env proteins are otherwise only very weakly immunogenic. The HIV-1 vaccine field now uses the well-defined structures of trimeric Env glycoproteins, like SOSIPs, to present multiple known epitopes for broad and potent neutralizing human antibodies in a native-like conformation. Successful adjuvant formulations must not disrupt how the trimers are folded, as that could adversely affect their performance as immunogens. We studied whether the various adjuvants most commonly used in animal experiments affect the integrity of two different SOSIP trimers in vitro Most adjuvant classes are not problematic, but an aluminum sulfate formulation is highly damaging, as it exposes trimers to acidic pH and a nucleic acid-based adjuvant can bind to the trimer and block access to a key neutralizing epitope.
Assuntos
Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos , Epitopos/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/administração & dosagem , Anticorpos Neutralizantes/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Multimerização ProteicaRESUMO
Soluble envelope glycoprotein (Env) trimers (SOSIP.664 gp140) are attractive HIV-1 vaccine candidates, with structures that mimic the native membrane-bound Env spike (gp160). Since engineering trimers can be limited by the difficulty of rationally predicting beneficial mutations, here we used a more comprehensive mutagenesis approach with the goal of identifying trimer variants with improved antigenic and stability properties. We created 341 cysteine pairs at predicted points of stabilization throughout gp140, 149 proline residue substitutions at every residue of the gp41 ectodomain, and 362 space-filling residue substitutions at every hydrophobic and aromatic residue in gp140. The parental protein target, the clade B strain B41 SOSIP.664 gp140, does not bind the broadly neutralizing antibody PGT151 and so was used here to identify improved variants that also provide insight into the structural basis for Env antigenicity. Each of the 852 mutants was expressed in human cells and screened for antigenicity using four different monoclonal antibodies (MAbs), including PGT151. We identified 29 trimer variants with antigenic improvements derived from each of the three mutagenesis strategies. We selected four variants (Q203F, T538F, I548F, and M629P) for more comprehensive biochemical, structural, and antigenicity analyses. The T538F substitution had the most beneficial effect overall, including restoration of the PGT151 epitope. The improved B41 SOSIP.664 trimer variants identified here may be useful for vaccine and structural studies.IMPORTANCE Soluble Env trimers have become attractive HIV-1 vaccine candidates, but the prototype designs are capable of further improvement through protein engineering. Using a high-throughput screening technology (shotgun mutagenesis) to create and evaluate 852 variants, we were able to identify sequence changes that were beneficial to the antigenicity and stability of soluble trimers based on the clade B B41 env gene. The strategies described here may be useful for identifying a wider range of antigenically and structurally improved soluble trimers based on multiple genotypes for use in programs intended to create a broadly protective HIV-1 vaccine.
Assuntos
Vacinas contra a AIDS/imunologia , Substituição de Aminoácidos , Proteína gp160 do Envelope de HIV/imunologia , HIV-1/imunologia , Mutagênese , Mutação de Sentido Incorreto , Vacinas contra a AIDS/genética , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Neutralizantes/imunologia , Células HEK293 , Anticorpos Anti-HIV/imunologia , Proteína gp160 do Envelope de HIV/genética , HIV-1/genética , HumanosRESUMO
Soluble, recombinant native-like envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed for structural studies and as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design is designated SOSIP.664, but many HIV-1 env genes do not yield fully native-like trimers efficiently. One such env gene is CZA97.012 from a neutralization-resistant (tier 2) clade C virus. As appropriately purified, native-like CZA97.012 SOSIP.664 trimers induce autologous neutralizing antibodies (NAbs) efficiently in immunized rabbits, we sought to improve the efficiency with which they can be produced and to better understand the limitations to the original design. By using structure- and antigenicity-guided mutagenesis strategies focused on the V2 and V3 regions and the gp120-gp41 interface, we developed the CZA97 SOSIP.v4.2-M6.IT construct. Fully native-like, stable trimers that display multiple bNAb epitopes could be expressed from this construct in a stable CHO cell line and purified at an acceptable yield using either a PGT145 or a 2G12 bNAb affinity column. We also show that similar mutagenesis strategies can be used to improve the yields and properties of SOSIP.664 trimers of the DU422, 426c, and 92UG037 genotypes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for future vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein (Env) structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. The vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. Because HIV-1 is extremely variable, a practical vaccine may need to incorporate Env trimers derived from multiple different virus sequences. Accordingly, we need to understand how to make recombinant trimers from many different env genes. Here, we show how to produce trimers from a clade C virus, CZA97.012, by using an array of protein engineering techniques to improve a prototypic construct. We also show that the methods may have wider utility for other env genes, thereby further guiding immunogen design.
Assuntos
HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/isolamento & purificação , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Células CHO , Cricetulus , Epitopos/imunologia , Genótipo , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Imunização , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Multimerização Proteica , Coelhos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/químicaRESUMO
Native-like trimers of the SOSIP design are being developed as immunogens in human immunodeficiency virus type 1 (HIV-1) vaccine development programs. These trimers display the epitopes for multiple broadly neutralizing antibodies (bNAbs) but can also expose binding sites for some types of nonneutralizing antibodies (non-NAbs). Among the latter are epitopes in the gp120 V3 region that are highly immunogenic when SOSIP trimers are evaluated in animal models. It is presently uncertain whether antibodies against V3 can interfere with the induction of NAbs, but there are good arguments in favor of suppressing such "off-target" immune responses. Accordingly, we have assessed how to minimize the exposure of V3 non-NAb epitopes and thereby reduce their immunogenicity by introducing N-glycans within the V3 region of BG505 SOSIP trimers. We found that inserting glycans at positions 306 and 314 (termed M1 and M7) markedly reduced V3 antigenicity while improving the presentation of trimer apex bNAb epitopes. Both added glycans were shown to be predominantly of the Man6GlcNAc2 form. The additional introduction of the E64K ground-state stabilizing substitution markedly reduced or ablated soluble CD4 (sCD4) induction of non-NAb epitopes in V3 and/or associated with the coreceptor binding site. When a V3 glycan- and E64K-modified trimer variant, BG505 SOSIP.664-E64K.M1M7, was tested in rabbits, V3 immunogenicity was eliminated while the autologous NAb response was unchanged.IMPORTANCE Trimeric proteins are being developed for future HIV-1 vaccine trials in humans, with the goal of eliciting broadly active neutralizing antibodies (NAbs) that are active against a wide variety of circulating strains. In animal models, the present generation of native-like trimer immunogens, exemplified by the BG505 SOSIP.664 construct, induces narrow-specificity antibodies against the neutralization-resistant (tier-2), sequence-matched virus and more broadly active antibodies against sequence-divergent atypically neutralization-sensitive (tier-1) viruses. A concern in the trimer immunogen design field has been whether the latter off-target antibodies might interfere with the induction of the more desired responses to tier-2 epitopes. Here, we have inserted two glycans into the dominant site for tier-1 NAbs, the gp120 V3 region, to block the induction of off-target antibodies. We characterized the new trimers, tested them as immunogens in rabbits, and found that the blocking glycans eliminated the induction of tier-1 NAbs to V3-epitopes.
Assuntos
Anticorpos Neutralizantes/sangue , Antígenos Virais/imunologia , Epitopos de Linfócito B/imunologia , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Animais , Glicosilação , Anticorpos Anti-HIV/sangue , Humanos , Grupos Populacionais , Processamento de Proteína Pós-Traducional , CoelhosRESUMO
We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses.
Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Feminino , Glicoproteínas/imunologia , Infecções por HIV/virologia , Humanos , Imunização , Multimerização Proteica , Coelhos , Proteínas Recombinantes , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
A key challenge in the quest toward an HIV-1 vaccine is design of immunogens that can generate a broadly neutralizing antibody (bnAb) response against the enormous sequence diversity of the HIV-1 envelope glycoprotein (Env). We previously demonstrated that a recombinant, soluble, fully cleaved SOSIP.664 trimer based on the clade A BG505 sequence is a faithful antigenic and structural mimic of the native trimer in its prefusion conformation. Here, we sought clade C native-like trimers with comparable properties. We identified DU422 and ZM197M SOSIP.664 trimers as being appropriately thermostable (Tm of 63.4 °C and 62.7 °C, respectively) and predominantly native-like, as determined by negative-stain electron microscopy (EM). Size exclusion chromatography, ELISA, and surface plasmon resonance further showed that these trimers properly display epitopes for all of the major bnAb classes, including quaternary-dependent, trimer-apex (e.g., PGT145) and gp120/gp41 interface (e.g., PGT151) epitopes. A cryo-EM reconstruction of the ZM197M SOSIP.664 trimer complexed with VRC01 Fab against the CD4 binding site at subnanometer resolution revealed a striking overall similarity to its BG505 counterpart with expected local conformational differences in the gp120 V1, V2, and V4 loops. These stable clade C trimers contribute additional diversity to the pool of native-like Env immunogens as key components of strategies to induce bnAbs to HIV-1.