Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739136

RESUMO

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

2.
Nanotechnology ; 35(4)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37625393

RESUMO

Respiratory aerosols with diameters smaller than 100µm have been confirmed as important vectors for the spread of diseases such as SARS-CoV-2. While disposable and cloth masks afford some protection, they are typically inefficient at filtering these aerosols and require specialized fabrication devices to produce. We describe a fabrication technique that makes use of a folding procedure (origami) to transform any filtration material into a mask. These origami masks can be fabricated by non-experts at minimal cost and effort, provide adequate filtration efficiencies, and are easily scaled to different facial sizes. Using a mannequin fit test simulator, we demonstrate that these masks can provide filtration efficiencies of over 90% while simultaneously providing greater comfort as demonstrated by pressure drops of <20 Pa. We also quantify mask leakage by measuring the variations in filtration efficiency and pressure drop when masks are sealed to the mannequin face compared to when the mask is unsealed but positioned to achieve the best fit. While leakage generally trended with pressure drop, some of the best performing mask media achieved <10% reduction in filtration efficiency due to leakage. Because this mask can provide high filtration efficiencies at low pressure drop compared to commercial alternatives, it is likely to promote greater mask wearing tolerance and acceptance.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Filtração , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Têxteis , Máscaras
3.
Environ Sci Technol ; 56(23): 17029-17038, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36394988

RESUMO

Oxidative stress mediated by reactive oxygen species (ROS) is a key process for adverse aerosol health effects. Secondary organic aerosols (SOA) account for a major fraction of fine particulate matter, and their inhalation and deposition into the respiratory tract causes the formation of ROS by chemical and cellular processes, but their relative contributions are hardly quantified and their link to oxidative stress remains uncertain. Here, we quantified cellular and chemical superoxide generation by 9,10-phenanthrenequinone (PQN) and isoprene SOA using a chemiluminescence assay combined with electron paramagnetic resonance spectroscopy as well as kinetic modeling. We also applied cellular imaging techniques to study the cellular mechanism of superoxide release and oxidative damage on cell membranes. We show that PQN and isoprene SOA activate NADPH oxidase in macrophages to release massive amounts of superoxide, overwhelming the superoxide formation by aqueous chemical reactions in the epithelial lining fluid. The activation dose for PQN is 2 orders of magnitude lower than that of isoprene SOA, suggesting that quinones are more toxic. While higher exposures trigger cellular antioxidant response elements, the released ROS induce oxidative damage to the cell membrane through lipid peroxidation. Such mechanistic and quantitative understandings provide a basis for further elucidation of adverse health effects and oxidative stress by fine particulate matter.


Assuntos
Poluentes Atmosféricos , Superóxidos , Espécies Reativas de Oxigênio/metabolismo , Quinonas , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , Poluentes Atmosféricos/análise , Aerossóis , Material Particulado/toxicidade , Material Particulado/análise , Estresse Oxidativo , Macrófagos
4.
Part Fibre Toxicol ; 19(1): 5, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996492

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. RESULTS: Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. CONCLUSIONS: These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.


Assuntos
Reserva Ovariana , Animais , Apolipoproteínas , Apolipoproteínas E/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Folículo Ovariano , Material Particulado/toxicidade
5.
Bioconjug Chem ; 31(3): 673-684, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31986014

RESUMO

Targeting the inability of cancerous cells to adapt to metabolic stress is a promising alternative to conventional cancer chemotherapy. FTY720 (Gilenya), an FDA-approved drug for the treatment of multiple sclerosis, has recently been shown to inhibit cancer progression through the down-regulation of essential nutrient transport proteins, selectively starving cancer cells to death. However, the clinical use of FTY720 for cancer therapy is prohibited because of its capability of inducing immunosuppression (lymphopenia) and bradycardia when phosphorylated upon administration. A prodrug to specifically prevent phosphorylation during circulation, hence avoiding bradycardia and lymphopenia, was synthesized by capping its hydroxyl groups with polyethylene glycol (PEG) via an acid-cleavable ketal linkage. Improved aqueous solubility was also accomplished by PEGylation. The prodrug reduces to fully potent FTY720 upon cellular uptake and induces metabolic stress in cancer cells. Enhanced release of FTY720 at a mildly acidic endosomal pH and the ability to substantially down-regulate cell-surface nutrient transporter proteins in leukemia cells only by an acid-cleaved drug were confirmed. Importantly, the prodrug demonstrated nearly identical efficacy to FTY720 in an animal model of BCR-Abl-driven leukemia without inducing bradycardia or lymphopenia in vivo, highlighting its potential clinical value. The prodrug formulation of FTY720 demonstrates the utility of precisely engineering a drug to avoid undesirable effects by tackling specific molecular mechanisms as well as a financially favorable alternative to new drug development. A multitude of existing cancer therapeutics may be explored for prodrug formulation to avoid specific side effects and preserve or enhance therapeutic efficacy.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/farmacologia , Leucemia/tratamento farmacológico , Polietilenoglicóis/química , Acetais/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Leucemia/patologia , Fosforilação
6.
Environ Res ; 173: 462-468, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981117

RESUMO

Wildland firefighters are exposed to wood smoke, which contains hazardous air pollutants, by suppressing thousands of wildfires across the U. S. each year. We estimated the relative risk of lung cancer and cardiovascular disease mortality from existing PM2.5 exposure-response relationships using measured PM4 concentrations from smoke and breathing rates from wildland firefighter field studies across different exposure scenarios. To estimate the relative risk of lung cancer (LC) and cardiovascular disease (CVD) mortality from exposure to PM2.5 from smoke, we used an existing exposure-response (ER) relationship. We estimated the daily dose of wildfire smoke PM2.5 from measured concentrations of PM4, estimated wildland firefighter breathing rates, daily shift duration (hours per day) and frequency of exposure (fire days per year and career duration). Firefighters who worked 49 days per year were exposed to a daily dose of PM4 that ranged from 0.15 mg to 0.74 mg for a 5- and 25-year career, respectively. The daily dose for firefighters working 98 days per year of PM4 ranged from 0.30 mg to 1.49 mg. Across all exposure scenarios (49 and 98 fire days per year) and career durations (5-25 years), we estimated that wildland firefighters were at an increased risk of LC (8 percent to 43 percent) and CVD (16 percent to 30 percent) mortality. This unique approach assessed long term health risks for wildland firefighters and demonstrated that wildland firefighters have an increased risk of lung cancer and cardiovascular disease mortality.


Assuntos
Doenças Cardiovasculares/mortalidade , Bombeiros , Incêndios , Neoplasias Pulmonares/mortalidade , Exposição Ocupacional/estatística & dados numéricos , Humanos , Fumaça
8.
Inhal Toxicol ; 28(3): 95-139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26915822

RESUMO

Each year, the general public and wildland firefighters in the US are exposed to smoke from wildland fires. As part of an effort to characterize health risks of breathing this smoke, a review of the literature was conducted using five major databases, including PubMed and MEDLINE Web of Knowledge, to identify smoke components that present the highest hazard potential, the mechanisms of toxicity, review epidemiological studies for health effects and identify the current gap in knowledge on the health impacts of wildland fire smoke exposure. Respiratory events measured in time series studies as incidences of disease-caused mortality, hospital admissions, emergency room visits and symptoms in asthma and chronic obstructive pulmonary disease patients are the health effects that are most commonly associated with community level exposure to wildland fire smoke. A few recent studies have also determined associations between acute wildland fire smoke exposure and cardiovascular health end-points. These cardiopulmonary effects were mostly observed in association with ambient air concentrations of fine particulate matter (PM2.5). However, research on the health effects of this mixture is currently limited. The health effects of acute exposures beyond susceptible populations and the effects of chronic exposures experienced by the wildland firefighter are largely unknown. Longitudinal studies of wildland firefighters during and/or after the firefighting career could help elucidate some of the unknown health impacts of cumulative exposure to wildland fire smoke, establish occupational exposure limits and help determine the types of exposure controls that may be applicable to the occupation.


Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Incêndios , Fumaça/efeitos adversos , Florestas , Humanos , Plantas , Madeira
9.
J Am Heart Assoc ; 13(18): e035462, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39258553

RESUMO

BACKGROUND: Electronic cigarettes have gained popularity as a nicotine delivery system, which has been recommended by some as an aid to help people quit traditional smoking. The potential long-term effects of vaping on the cardiovascular system, as well as how their effects compare with those from standard cigarettes, are not well understood. The intrinsic frequency (IF) method is a systems approach for analysis of left ventricle and arterial function. Recent clinical studies have demonstrated the diagnostic and prognostic value of IF. Here, we aim to determine whether the novel IF metrics derived from carotid pressure waveforms can detect effects of nicotine (delivered by chronic exposure to electronic cigarette vapor or traditional cigarette smoke) on the cardiovascular system. METHODS AND RESULTS: One hundred seventeen healthy adult male and female rats were exposed to purified air (control), electronic cigarette vapor without nicotine, electronic cigarette vapor with nicotine, and traditional nicotine-rich cigarette smoke, after which hemodynamics were comprehensively evaluated. IF metrics were computed from invasive carotid pressure waveforms. Standard cigarettes significantly increased the first IF (indicating left ventricle contractile dysfunction). Electronic cigarettes with nicotine significantly reduced the second IF (indicating adverse effects on vascular function). No significant difference was seen in the IF metrics between controls and electronic cigarettes without nicotine. Exposure to electronic cigarettes with nicotine significantly increased the total IF variation (suggesting adverse effects on left ventricle-arterial coupling and its optimal state), when compared with electronic cigarettes without nicotine. CONCLUSIONS: Our IF results suggest that nicotine-containing electronic cigarettes adversely affect vascular function and left ventricle-arterial coupling, whereas standard cigarettes have an adverse effect on left ventricle function.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Masculino , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Nicotina/toxicidade , Feminino , Vaping/efeitos adversos , Vapor do Cigarro Eletrônico/efeitos adversos , Ratos , Função Ventricular Esquerda/efeitos dos fármacos , Ratos Sprague-Dawley , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/toxicidade , Agonistas Nicotínicos/efeitos adversos , Hemodinâmica/efeitos dos fármacos , Produtos do Tabaco/efeitos adversos
10.
Commun Biol ; 7(1): 1037, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179782

RESUMO

Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aß) and tau. However, it is not yet known whether directed FC is already influenced by Aß and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aß tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aß/tau.


Assuntos
Peptídeos beta-Amiloides , Encéfalo , Eletroencefalografia , Proteínas tau , Humanos , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Feminino , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Encéfalo/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Idoso , Cognição , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade
11.
Cardiovasc Toxicol ; 24(2): 199-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38340234

RESUMO

The effect of electronic cigarette (E-cig) vaping on cardiac and vascular function during the healing phase of myocardial infarction (MI), and post-MI remodeling was investigated. Sprague Dawley rats were subjected to left coronary artery ligation to induce MI. One week later, rats were randomized to receive either 12 weeks of exposure to purified air (n = 37) or E-cig vapor (15 mg/ml of nicotine) (n = 32). At 12 weeks, cardiac and vascular function, and post-MI remodeling were assessed. Baseline blood flow in the femoral artery did not differ between groups, but peak reperfusion blood flow was blunted in the E-cig group (1.59 ± 0.15 ml/min) vs. the air group (2.11 ± 0.18 ml/min; p = 0.034). Femoral artery diameter after reperfusion was narrower in the E-cig group (0.54 ± 0.02 mm) compared to the air group (0.60 ± 0.02 mm; p = 0.023). Postmortem left ventricular (LV) volumes were similar in the E-cig (0.69 ± 0.04 ml) and air groups (0.73 ± 0.04 ml; p = NS); and myocardial infarct expansion index did not differ between groups (1.4 ± 0.1 in E-cig group versus 1.3 ± 0.1 in air group; p = NS). LV fractional shortening by echo did not differ between groups at 12 weeks (E-cig at 29 ± 2% and air at 27 ± 1%; p = NS). Exposure to E-cig during the healing phase of MI was associated with altered vascular function with reduced femoral artery blood flow and diameter at reperfusion, but not with worsened LV dilation or worsened cardiac function.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Infarto do Miocárdio , Vaping , Animais , Ratos , Coração , Ratos Sprague-Dawley , Vaping/efeitos adversos , Remodelação Ventricular
12.
Cureus ; 15(11): e48995, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38111420

RESUMO

The availability of a wide range of flavored e-cigarettes is one of the primary reasons for vaping initiation and persistent use among adolescents and young people. This plethora of flavors available on the market are crafted using different flavoring agents such as cinnamaldehyde, vanillin, benzaldehyde, ethyl maltol, menthol, and dimethylpyrazine. Recent studies have brought to light the potential risks associated with e-cigarette flavoring agents and their effects on various organ systems, both with and without nicotine. Research has demonstrated that flavoring agents can induce inflammation, endothelial dysfunction, epithelial barrier disruption, oxidative stress, DNA damage, electrophysiological alterations, immunomodulatory effects, and behavioral changes, even independently of nicotine. Notably, these negative outcomes adversely affect cardiovascular system by reducing cell viability, decreasing endothelial nitric oxide synthase, nitric oxide bioavailability, soluble guanylyl cyclase activity and cyclic guanosine monophosphate accumulation, impairing endothelial proliferation and tube formation, and altering vasoreactivity resulting in vascular dysfunction. In the heart, these agents decrease parasympathetic activity, induce depolarization of resting membrane potential, loss of rhythmicity, increase isovolumic relaxation time, and change in ventricular repolarization and ventricular tachyarrhythmias. It is found that the specific response elicited by flavoring agents in different organ systems varies depending on the flavor used, the concentration of the flavoring agent, and the duration of exposure. However, the literature on the effects of flavoring agents is currently limited, emphasizing the need for more preclinical and randomized clinical trials to gain a deeper understanding and provide further evidence of the harmful effects of flavored e-cigarette use. In summary, recent research suggests that flavoring agents themselves can have detrimental effects on the body. To fully comprehend these effects, additional preclinical and clinical studies are needed to explore the risks associated with flavored e-cigarette usage.

13.
Artigo em Inglês | MEDLINE | ID: mdl-37587981

RESUMO

Introduction: Resting heart rate (HR) and heart rate variability (HRV) have been linked with cognition in the general population and in older individuals. The knowledge of this aspect of heart-brain relationship is relatively absent in older individuals with early Alzheimer's disease (AD) pathology. This study explores relationships of the HR, HRV, and cognition in cognitively healthy individuals with pathological amyloid/tau ratio (CH-PATs) in cerebral spinal fluid (CSF) compared to those with normal ratio (CH-NATs). Methods: We examined therelationshipsbetween1) resting HR and Mini-Mental State Examination (MMSE); 2) resting HR and brain processing during Stroop interference; and 3) resting vagally mediated HRV (vmHRV) and task switching performance. Results: Our studies showed that compared to CH-NATs, those CH-PATs with higher resting HR presented with lower MMSE, and less brain activation during interference processing. In addition, resting vmHRV was significantly correlated with task switching accuracy in CH-NATs, but not in CH-PATs. Discussion: Thesethreedifferenttestsindicatedysfunctionalheart-brainconnections in CH-PATs, suggesting a potential cardio-cerebral dysfunctional integration.

14.
Front Oncol ; 13: 1210528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546389

RESUMO

Introduction: Somatic mutations in myeloid growth factor pathway genes, such as JAK2, and genes involved in epigenetic regulation, such as TET2, in hematopoietic stem cells (HSCs) leads to clonal hematopoiesis of indeterminate potential (CHIP) which presents a risk factor for hematologic malignancy and cardiovascular disease. Smoking behavior has been repeatedly associated with the occurrence of CHIP but whether smoking is an environmental inflammatory stressor in promoting clonal expansion has not been investigated. Methods: We performed in vivo smoke exposures in both wildtype (WT) mice and transplanted mice carrying Jak2V617F mutant and Tet2 knockout (Tet-/-) cells to determine the impact of cigarette smoke (CS) in the HSC compartment as well as favoring mutant cell expansion. Results: WT mice exposed to smoke displayed increased oxidative stress in long-term HSCs and suppression of the hematopoietic stem and progenitor compartment but smoke exposure did not translate to impaired hematopoietic reconstitution in primary bone marrow transplants. Gene expression analysis of hematopoietic cells in the bone marrow identified an imbalance between Th17 and Treg immune cells suggesting a local inflammatory environment. We also observed enhanced survival of Jak2V617F cells exposed to CS in vivo and cigarette smoke extract (CSE) in vitro. WT bone marrow hematopoietic cells from WT/Jak2V617F chimeric mice exposed to CS demonstrated an increase in neutrophil abundance and distinct overexpression of bone marrow stromal antigen 2 (Bst2) and retinoic acid early transcript 1 (Raet1) targets. Bst2 and Raet1 are indicative of increased interferon signaling and cellular stress including oxidative stress and DNA damage, respectively. In chimeric mice containing both WT and Tet2-/- cells, we observed an increased percentage of circulating mutant cells in peripheral blood post-cigarette smoke exposure when compared to pre-exposure levels while this difference was absent in air-exposed controls. Conclusion: Altogether, these findings demonstrate that CS results in an inflamed bone marrow environment that provides a selection pressure for existing CHIP mutations such as Jak2V617F and Tet2 loss-of-function.

15.
Front Neurosci ; 17: 1055445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937689

RESUMO

The heart and brain have bi-directional influences on each other, including autonomic regulation and hemodynamic connections. Heart rate variability (HRV) measures variation in beat-to-beat intervals. New findings about disorganized sinus rhythm (erratic rhythm, quantified as heart rate fragmentation, HRF) are discussed and suggest overestimation of autonomic activities in HRV changes, especially during aging or cardiovascular events. When excluding HRF, HRV is regulated via the central autonomic network (CAN). HRV acts as a proxy of autonomic activity and is associated with executive functions, decision-making, and emotional regulation in our health and wellbeing. Abnormal changes of HRV (e.g., decreased vagal functioning) are observed in various neurological conditions including mild cognitive impairments, dementia, mild traumatic brain injury, migraine, COVID-19, stroke, epilepsy, and psychological conditions (e.g., anxiety, stress, and schizophrenia). Efforts are needed to improve the dynamic and intriguing heart-brain interactions.

16.
J Cardiovasc Pharmacol Ther ; 28: 10742484231155992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36799436

RESUMO

PURPOSE: We investigated the effects of exposure to electronic cigarettes (E-cig) vapor on the sizes of the no-reflow and myocardial infarction regions, and cardiovascular function compared to exposure to purified air and standard cigarette smoke. METHODS AND RESULTS: Sprague Dawley rats (both male and female, 6 weeks old) were successfully exposed to filtered air (n = 32), E-cig with nicotine (E-cig Nic+, n = 26), E-cig without nicotine (E-cig Nic-, n = 26), or standard cigarette smoke (1R6F reference, n = 31). All rats were exposed to inhalation exposure for 8 weeks, prior to being subjected to 30 minutes of left coronary artery occlusion followed by 3 hours of reperfusion. Exposure to E-cig vapor with or without nicotine or exposure to standard cigarettes did not increase myocardial infarct size or worsen the no-reflow phenomenon. Exposure to E-cig Nic+ reduced the body weight gain, and increased the LV weight normalized to body weight and LV wall thickness and enhanced the collagen deposition within the LV wall. E-cig exposure led to cardiovascular dysfunction, such as reductions in cardiac output, LV positive and negative dp/dt, suggesting a reduction in contractility and relaxation, and increased systemic arterial resistance after coronary artery occlusion and reperfusion in rats compared to air or cigarette exposure. CONCLUSIONS: E-cig exposure did not increase myocardial infarct size or worsen the no-reflow phenomenon, but induced deleterious changes in LV structure leading to cardiovascular dysfunction and increased systemic arterial resistance after coronary artery occlusion followed by reperfusion.


Assuntos
Vapor do Cigarro Eletrônico , Sistemas Eletrônicos de Liberação de Nicotina , Infarto do Miocárdio , Fenômeno de não Refluxo , Ratos , Masculino , Feminino , Animais , Nicotina/toxicidade , Fenômeno de não Refluxo/etiologia , Ratos Sprague-Dawley , Peso Corporal
17.
Toxicol Sci ; 193(2): 175-191, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37074955

RESUMO

Exposure to traffic-related air pollution consisting of particulate matter (PM) is associated with cognitive decline leading to Alzheimer's disease (AD). In this study, we sought to examine the neurotoxic effects of exposure to ultrafine PM and how it exacerbates neuronal loss and AD-like neuropathology in wildtype (WT) mice and a knock-in mouse model of AD (AppNL-G-F/+-KI) when the exposure occurs at a prepathologic stage or at a later age with the presence of neuropathology. AppNL-G-F/+-KI and WT mice were exposed to concentrated ultrafine PM from local ambient air in Irvine, California, for 12 weeks, starting at 3 or 9 months of age. Particulate matter-exposed animals received concentrated ultrafine PM up to 8 times above the ambient levels, whereas control animals were exposed to purified air. Particulate matter exposure resulted in a marked impairment of memory tasks in prepathologic AppNL-G-F/+-KI mice without measurable changes in amyloid-ß pathology, synaptic degeneration, and neuroinflammation. At aged, both WT and AppNL-G-F/+-KI mice exposed to PM showed a significant memory impairment along with neuronal loss. In AppNL-G-F/+-KI mice, we also detected an increased amyloid-ß buildup and potentially harmful glial activation including ferritin-positive microglia and C3-positive astrocytes. Such glial activation could promote the cascade of degenerative consequences in the brain. Our results suggest that exposure to PM impairs cognitive function at both ages while exacerbation of AD-related pathology and neuronal loss may depend on the stage of pathology, aging, and/or state of glial activation. Further studies will be required to unveil the neurotoxic role of glial activation activated by PM exposure.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Material Particulado/toxicidade , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Encéfalo/metabolismo , Transtornos da Memória/induzido quimicamente , Camundongos Transgênicos
18.
Environ Toxicol Pharmacol ; 100: 104115, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075874

RESUMO

Insulin resistance (IR) and metabolic disorders are non-pulmonary adverse effects induced by fine particulate matter (PM2.5) exposure. The worldwide pandemic of high fructose sweeteners and fat rich modern diets, also contribute to IR development. We investigated some of the underlying effects of IR, altered biochemical insulin action and Insulin/AKT pathway biomarkers. Male Sprague Dawley rats were subchronically exposed to filtered air, PM2.5, a fructose rich diet (FRD), or PM2.5 + FRD. Exposure to PM2.5 or FRD alone did not induce metabolic changes. However, PM2.5 + FRD induced leptin release, systemic hyperinsulinemia, and Insulin/AKT dysregulation in insulin-sensitive tissues preceded by altered AT1R levels. Histological damage and increased HOMA-IR were also observed from PM2.5 + FRD co-exposure. Our results indicate that the concomitant exposure to a ubiquitous environmental pollutant, such as PM2.5, and a metabolic disease risk factor, a FRD, can contribute to the metabolic disorder pandemic occurring in highly polluted locations.


Assuntos
Resistência à Insulina , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Frutose/toxicidade , Material Particulado/toxicidade , Proteínas Proto-Oncogênicas c-akt , Dieta , Insulina/metabolismo
19.
Cardiol Res ; 13(6): 323-332, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36660061

RESUMO

Background: Electronic cigarettes (eC) may not be entirely benign. There is a lack of data on the effect of a single acute exposure of eC vapor using various heating sources and power settings upon lung injury. The purpose of this study was to determine if an acute exposure with eC vapor heated with different heating elements and power levels induced inflammatory changes in the lungs and heart. Methods: Rats were exposed to pure air or received a single, 4-h exposure to eC vapor. The devices used either a stainless steel (SS) or nichrome (NC) heating element randomized to a low or high atomization power (45 versus 70 W). Rats were euthanized within 48 h of exposure. Results: The eC groups showed accumulation of inflammatory cells in bronchial lumen, near the pleura, and within the alveolar spaces. The numbers of inflammatory cells per field in the lung parenchyma were significantly greater in the rats exposed to eC groups vs. the air group. There were significantly higher inflammatory gene expression changes in the lungs of animals assigned to 70 W power. We observed that eC vapor generated using burnt coils were toxic and could cause acute respiratory distress and myocarditis. Conclusion: In conclusion, one 4-h exposure to eC vapor, in the absence of vitamin E oil or nicotine, significantly increased lung inflammation. Effects were seen after exposures to vapor generated using SS and NC heating elements at either high or low power. Vapor from devices with burnt coils can negatively affect the heart and lung.

20.
J Phys Chem A ; 115(23): 5810-21, 2011 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-21291193

RESUMO

Nitrate ions commonly coexist with halide ions in aged sea salt particles, as well as in the Arctic snowpack, where NO(3)(-) photochemistry is believed to be an important source of NO(y) (NO + NO(2) + HONO + ...). The effects of bromide ions on nitrate ion photochemistry were investigated at 298 ± 2 K in air using 311 nm photolysis lamps. Reactions were carried out using NaBr/NaNO(3) and KBr/KNO(3) deposited on the walls of a Teflon chamber. Gas phase halogen products and NO(2) were measured as a function of photolysis time using long path FTIR, NO(y) chemiluminescence and atmospheric pressure ionization mass spectrometry (API-MS). Irradiated NaBr/NaNO(3) mixtures show an enhancement in the rates of production of NO(2) and Br(2) as the bromide mole fraction (χ(NaBr)) increased. However, this was not the case for KBr/KNO(3) mixtures where the rates of production of NO(2) and Br(2) remained constant over all values of χ(KBr). Molecular dynamics (MD) simulations show that the presence of bromide in the NaBr solutions pulls sodium toward the solution surface, which in turn attracts nitrate to the interfacial region, allowing for more efficient escape of NO(2) than in the absence of halides. However, in the case of KBr/KNO(3), bromide ions do not appreciably affect the distribution of nitrate ions at the interface. Clustering of Br(-) with NO(3)(-) and H(2)O predicted by MD simulations for sodium salts may facilitate a direct intermolecular reaction, which could also contribute to higher rates of NO(2) production. Enhanced photochemistry in the presence of halide ions may be important for oxides of nitrogen production in field studies such as in polar snowpacks where the use of quantum yields from laboratory studies in the absence of halide ions would lead to a significant underestimate of the photolysis rates of nitrate ions.


Assuntos
Brometos/química , Membranas Artificiais , Nitratos/química , Água/química , Pressão Atmosférica , Íons/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA