Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 98(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36396354

RESUMO

Plant-soil interactions can be important drivers of biological invasions. In particular, the symbiotic relationship between legumes and nitrogen-fixing soil bacteria (i.e. rhizobia) may be influential in invasion success. Legumes, including Australian acacias, have been introduced into novel ranges around the world. Our goal was to examine the acacia-rhizobia symbiosis to determine whether cointroduction of non-native mutualists plays a role in invasiveness of introduced legumes. To determine whether acacias were introduced abroad concurrently with native symbionts, we selected four species introduced to California (two invasive and two noninvasive in the region) and identified rhizobial strains associating with each species in their native and novel ranges. We amplified three genes to examine phylogenetic placement (16S rRNA) and provenance (nifD and nodC) of rhizobia associating with acacias in California and Australia. We found that all Acacia species, regardless of invasive status, are associating with rhizobia of Australian origin in their introduced ranges, indicating that concurrent acacia-rhizobia introductions have occurred for all species tested. Our results suggest that cointroduction of rhizobial symbionts may be involved in the establishment of non-native acacias in their introduced ranges, but do not contribute to the differential invasiveness of Acacia species introduced abroad.


Assuntos
Acacia , Fabaceae , Bactérias Fixadoras de Nitrogênio , Rhizobium , Rhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Austrália , California , Solo
2.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27535176

RESUMO

Identification of mechanisms that allow some species to outcompete others is a fundamental goal in ecology and invasive species management. One useful approach is to examine congeners varying in invasiveness in a comparative framework across native and invaded ranges. Acacia species have been widely introduced outside their native range of Australia, and a subset of these species have become invasive in multiple parts of the world. Within specific regions, the invasive status of these species varies. Our study examined whether a key mechanism in the life history of Acacia species, the legume-rhizobia symbiosis, influences acacia invasiveness on a regional scale. To assess the extent to which species varying in invasiveness correspondingly differ with regard to the diversity of rhizobia they associate with, we grew seven Acacia species ranging in invasiveness in California in multiple soils from both their native (Australia) and introduced (California) ranges. In particular, the aim was to determine whether more invasive species formed symbioses with a wider diversity of rhizobial strains (i.e. are more promiscuous hosts). We measured and compared plant performance, including aboveground biomass, survival, and nodulation response, as well as rhizobial community composition and richness. Host promiscuity did not differ among invasiveness categories. Acacia species that varied in invasiveness differed in aboveground biomass for only one soil and did not differ in survival or nodulation within individual soils. In addition, acacias did not differ in rhizobial richness among invasiveness categories. However, nodulation differed between regions and was generally higher in the native than introduced range. Our results suggest that all Acacia species introduced to California are promiscuous hosts and that host promiscuity per se does not explain the observed differences in invasiveness within this region. Our study also highlights the utility of assessing potential mechanisms of invasion in species' native and introduced ranges.

3.
AoB Plants ; 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-28039118

RESUMO

Evolutionary processes greatly impact the outcomes of biological invasions. An extensive body of research suggests that invasive populations often undergo phenotypic and ecological divergence from their native sources. Evolution also operates at different and distinct stages during the invasion process. Thus, it is important to incorporate evolutionary change into frameworks of biological invasions because it allows us to conceptualize how these processes may facilitate or hinder invasion success. Here, we review such processes, with an emphasis on tree invasions, and place them in the context of the unified framework for biological invasions. The processes and mechanisms described are pre-introduction evolutionary history, sampling effect, founder effect, genotype-by-environment interactions, admixture, hybridization, polyploidization, rapid evolution, epigenetics, and second-genomes. For the last, we propose that co-evolved symbionts, both beneficial and harmful, which are closely physiologically associated with invasive species, contain critical genetic traits that affect the evolutionary dynamics of biological invasions. By understanding the mechanisms underlying invasion success, researchers will be better equipped to predict, understand, and manage biological invasions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA