Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(4): 962-980.e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309258

RESUMO

Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.


Assuntos
Encéfalo , Microglia , Axônios , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Macrófagos/fisiologia , Microglia/patologia , Morfogênese
2.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058763

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Monócitos , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Monócitos/imunologia , Humanos , Camundongos , Macrófagos Associados a Tumor/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
3.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979166

RESUMO

Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.

4.
Cancer Discov ; 13(11): 2448-2469, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623817

RESUMO

We developed a phenotypic screening platform for the functional exploration of dendritic cells (DC). Here, we report a genome-wide CRISPR screen that revealed BCL2 as an endogenous inhibitor of DC function. Knockout of BCL2 enhanced DC antigen presentation and activation as well as the capacity of DCs to control tumors and to synergize with PD-1 blockade. The pharmacologic BCL2 inhibitors venetoclax and navitoclax phenocopied these effects and caused a cDC1-dependent regression of orthotopic lung cancers and fibrosarcomas. Thus, solid tumors failed to respond to BCL2 inhibition in mice constitutively devoid of cDC1, and this was reversed by the infusion of DCs. Moreover, cDC1 depletion reduced the therapeutic efficacy of BCL2 inhibitors alone or in combination with PD-1 blockade and treatment with venetoclax caused cDC1 activation, both in mice and in patients. In conclusion, genetic and pharmacologic BCL2 inhibition unveils a DC-specific immune checkpoint that restrains tumor immunosurveillance. SIGNIFICANCE: BCL2 inhibition improves the capacity of DCs to stimulate anticancer immunity and restrain cancer growth in an immunocompetent context but not in mice lacking cDC1 or mature T cells. This study indicates that BCL2 blockade can be used to sensitize solid cancers to PD-1/PD-L1-targeting immunotherapy. This article is featured in Selected Articles from This Issue, p. 2293.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Células Dendríticas , Receptor de Morte Celular Programada 1 , Monitorização Imunológica , Camundongos Knockout , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética
5.
Cancer Discov ; 12(4): 958-983, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179201

RESUMO

Vaccination against coronavirus disease 2019 (COVID-19) relies on the in-depth understanding of protective immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We characterized the polarity and specificity of memory T cells directed against SARS-CoV-2 viral lysates and peptides to determine correlates with spontaneous, virus-elicited, or vaccine-induced protection against COVID-19 in disease-free and cancer-bearing individuals. A disbalance between type 1 and 2 cytokine release was associated with high susceptibility to COVID-19. Individuals susceptible to infection exhibited a specific deficit in the T helper 1/T cytotoxic 1 (Th1/Tc1) peptide repertoire affecting the receptor binding domain of the spike protein (S1-RBD), a hotspot of viral mutations. Current vaccines triggered Th1/Tc1 responses in only a fraction of all subject categories, more effectively against the original sequence of S1-RBD than that from viral variants. We speculate that the next generation of vaccines should elicit Th1/Tc1 T-cell responses against the S1-RBD domain of emerging viral variants. SIGNIFICANCE: This study prospectively analyzed virus-specific T-cell correlates of protection against COVID-19 in healthy and cancer-bearing individuals. A disbalance between Th1/Th2 recall responses conferred susceptibility to COVID-19 in both populations, coinciding with selective defects in Th1 recognition of the receptor binding domain of spike. See related commentary by McGary and Vardhana, p. 892. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Fatores de Restrição Antivirais , COVID-19 , Neoplasias , Linfócitos T , Anticorpos Neutralizantes , Fatores de Restrição Antivirais/imunologia , COVID-19/imunologia , Humanos , Neoplasias/complicações , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA