Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27015310

RESUMO

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação do Apetite , Glucose/metabolismo , Resistência à Insulina , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Alimentar , Camundongos , Miostatina/genética , Optogenética , Transcriptoma
2.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359991

RESUMO

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Assuntos
Regulação do Apetite , Hipotálamo/metabolismo , Obesidade/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Uridina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cell ; 156(3): 495-509, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24462248

RESUMO

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Assuntos
Dieta Hiperlipídica , Hiperglicemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Lactação , Obesidade/metabolismo , Animais , Axônios/metabolismo , Feminino , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Gravidez , Pró-Opiomelanocortina/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais
4.
EMBO J ; 41(22): e110963, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36217825

RESUMO

Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.


Assuntos
Neurônios , Sinapses , Camundongos , Animais , Sinapses/metabolismo , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transdução de Sinais , Autofagia
5.
Cell Tissue Res ; 383(1): 59-73, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33486607

RESUMO

Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.


Assuntos
Encéfalo/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Animais , Baratas
6.
Am J Hum Genet ; 100(2): 297-315, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132687

RESUMO

Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.


Assuntos
Endocitose/genética , Atrofia Muscular Espinal/genética , Neurocalcina/metabolismo , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/patologia , Atrofia Muscular Espinal/terapia , Neurocalcina/genética , Células PC12 , Linhagem , Ratos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo , Transcriptoma , Peixe-Zebra/genética
7.
Glia ; 67(8): 1526-1541, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30989755

RESUMO

Mitochondrial dysfunction causes neurodegeneration but whether impairment of mitochondrial homeostasis in astrocytes contributes to this pathological process remains largely unknown. The m-AAA protease exerts quality control and regulatory functions crucial for mitochondrial homeostasis. AFG3L2, which encodes one of the subunits of the m-AAA protease, is mutated in spinocerebellar ataxia SCA28 and in infantile syndromes characterized by spastic-ataxia, epilepsy and premature death. Here, we investigate the role of Afg3l2 and its redundant homologue Afg3l1 in the Bergmann glia (BG), radial astrocytes of the cerebellum that have functional connections with Purkinje cells (PC) and regulate glutamate homeostasis. We show that astrocyte-specific deletion of Afg3l2 in the mouse leads to late-onset motor impairment and to degeneration of BG, which display aberrant morphology, altered expression of the glutamate transporter EAAT2, and a reactive inflammatory signature. The neurological and glial phenotypes are drastically exacerbated when astrocytes lack both Afg31l and Afg3l2, and therefore, are totally depleted of the m-AAA protease. Moreover, mitochondrial stress responses and necroptotic markers are induced in the cerebellum. In both mouse models, targeted BG show a fragmented mitochondrial network and loss of mitochondrial cristae, but no signs of respiratory dysfunction. Importantly, astrocyte-specific deficiency of Afg3l1 and Afg3l2 triggers secondary morphological degeneration and electrophysiological changes in PCs, thus demonstrating a non-cell-autonomous role of glia in neurodegeneration. We propose that astrocyte dysfunction amplifies both neuroinflammation and glutamate excitotoxicity in patients carrying mutations in AFG3L2, leading to a vicious circle that contributes to neuronal death.


Assuntos
Proteases Dependentes de ATP/deficiência , ATPases Associadas a Diversas Atividades Celulares/deficiência , Astrócitos/enzimologia , Cerebelo/enzimologia , Metaloendopeptidases/deficiência , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/enzimologia , Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Astrócitos/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Inflamação/enzimologia , Inflamação/patologia , Masculino , Metaloendopeptidases/genética , Camundongos Transgênicos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Células de Purkinje/enzimologia , Células de Purkinje/patologia
8.
J Neurosci ; 37(28): 6761-6777, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592699

RESUMO

Ca2+-influx through L-type Ca2+-channels (LTCCs) is associated with activity-related stressful oscillations of Ca2+ levels within dopaminergic (DA) neurons in the substantia nigra (SN), which may contribute to their selective degeneration in Parkinson's disease (PD). LTCC blockers were neuroprotective in mouse neurotoxin models of PD, and isradipine is currently undergoing testing in a phase III clinical trial in early PD. We report no evidence for neuroprotection by in vivo pretreatment with therapeutically relevant isradipine plasma levels, or Cav1.3 LTCC deficiency in 6-OHDA-treated male mice. To explain this finding, we investigated the pharmacological properties of human LTCCs during SN DA-like and arterial smooth muscle (aSM)-like activity patterns using whole-cell patch-clamp recordings in HEK293 cells (Cav1.2 α1-subunit, long and short Cav1.3 α1-subunit splice variants; ß3/α2δ1). During SN DA-like pacemaking, only Cav1.3 variants conducted Ca2+ current (ICa) at subthreshold potentials between action potentials. SN DA-like burst activity increased integrated ICa during (Cav1.2 plus Cav1.3) and after (Cav1.3) the burst. Isradipine inhibition was splice variant and isoform dependent, with a 5- to 11-fold lower sensitivity to Cav1.3 variants during SN DA-like pacemaking compared with Cav1.2 during aSM-like activity. Supratherapeutic isradipine concentrations reduced the pacemaker precision of adult mouse SN DA neurons but did not affect their somatic Ca2+ oscillations. Our data predict that Cav1.2 and Cav1.3 splice variants contribute differentially to Ca2+ load in SN DA neurons, with prominent Cav1.3-mediated ICa between action potentials and after bursts. The failure of therapeutically relevant isradipine levels to protect SN DA neurons can be explained by weaker state-dependent inhibition of SN DA LTCCs compared with aSM Cav1.2.SIGNIFICANCE STATEMENT The high vulnerability of dopamine (DA) neurons in the substantia nigra (SN) to neurodegenerative stressors causes Parkinson's disease (PD). Ca2+ influx through voltage-gated L-type Ca2+ channels (LTCCs), in particular Cav1.3, appears to contribute to this vulnerability, and the LTCC inhibitor isradipine is currently being tested as a neuroprotective agent for PD in a phase III clinical trial. However, in our study isradipine plasma concentrations approved for therapy were not neuroprotective in a PD mouse model. We provide an explanation for this observation by demonstrating that during SN DA-like neuronal activity LTCCs are less sensitive to isradipine than Cav1.2 LTCCs in resistance blood vessels (mediating dose-limiting vasodilating effects) and even at supratherapeutic concentrations isradipine fails to reduce somatic Ca2+ oscillations of SN DA neurons.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Isradipino/metabolismo , Substância Negra/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Isradipino/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Substância Negra/efeitos dos fármacos
9.
J Neurophysiol ; 117(5): 2053-2064, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179480

RESUMO

In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.


Assuntos
Potenciais de Ação , Antenas de Artrópodes/fisiologia , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Antenas de Artrópodes/citologia , Encéfalo/citologia , Encéfalo/fisiologia , Células Cultivadas , Baratas , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia
10.
J Neurophysiol ; 115(5): 2330-40, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823514

RESUMO

Ca(2+)-activated potassium currents [IK(Ca)] are an important link between the intracellular signaling system and the membrane potential, which shapes intrinsic electrophysiological properties. To better understand the ionic mechanisms that mediate intrinsic firing properties of olfactory uniglomerular projection neurons (uPNs), we used whole cell patch-clamp recordings in an intact adult brain preparation of the male cockroach Periplaneta americana to analyze IK(Ca) In the insect brain, uPNs form the principal pathway from the antennal lobe to the protocerebrum, where centers for multimodal sensory processing and learning are located. In uPNs the activation of IK(Ca) was clearly voltage and Ca(2+) dependent. Thus under physiological conditions IK(Ca) is strongly dependent on Ca(2+) influx kinetics and on the membrane potential. The biophysical characterization suggests that IK(Ca) is generated by big-conductance (BK) channels. A small-conductance (SK) channel-generated current could not be detected. IK(Ca) was sensitive to charybdotoxin (CTX) and iberiotoxin (IbTX) but not to apamin. The functional role of IK(Ca) was analyzed in occlusion experiments under current clamp, in which portions of IK(Ca) were blocked by CTX or IbTX. Blockade of IK(Ca) showed that IK(Ca) contributes significantly to intrinsic electrophysiological properties such as the action potential waveform and membrane excitability.


Assuntos
Condutos Olfatórios/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Animais , Apamina/farmacologia , Cálcio/metabolismo , Charibdotoxina/farmacologia , Baratas , Masculino , Condutos Olfatórios/citologia , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Células Receptoras Sensoriais/metabolismo
11.
J Neurosci ; 34(39): 13039-46, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25253851

RESUMO

The antennal lobe (AL) of insects constitutes the first synaptic relay and processing center of olfactory information, received from olfactory sensory neurons located on the antennae. Complex synaptic connectivity between olfactory neurons of the AL ultimately determines the spatial and temporal tuning profile of (output) projection neurons to odors. Here we used paired whole-cell patch-clamp recordings in the cockroach Periplaneta americana to characterize synaptic interactions between cholinergic uniglomerular projection neurons (uPNs) and GABAergic local interneurons (LNs), both of which are key components of the insect olfactory system. We found rapid, strong excitatory synaptic connections between uPNs and LNs. This rapid excitatory transmission was blocked by the nicotinic acetylcholine receptor blocker mecamylamine. IPSPs, elicited by synaptic input from a presynaptic LN, were recorded in both uPNs and LNs. IPSPs were composed of both slow, sustained components and fast, transient components which were coincident with presynaptic action potentials. The fast IPSPs were blocked by the GABAA receptor chloride channel blocker picrotoxin, whereas the slow sustained IPSPs were blocked by the GABAB receptor blocker CGP-54626. This is the first study to directly show the predicted dual fast- and slow-inhibitory action of LNs, which was predicted to be key in shaping complex odor responses in the AL of insects. We also provide the first direct characterization of rapid postsynaptic potentials coincident with presynaptic spikes between olfactory processing neurons in the AL.


Assuntos
Antenas de Artrópodes/fisiologia , Neurônios Colinérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Interneurônios/fisiologia , Periplaneta/fisiologia , Animais , Antenas de Artrópodes/inervação , Neurônios Colinérgicos/metabolismo , Potenciais Pós-Sinápticos Excitadores , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Gânglios dos Invertebrados/fisiologia , Interneurônios/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Condutos Olfatórios/fisiologia , Compostos Organofosforados/farmacologia , Periplaneta/metabolismo , Picrotoxina/farmacologia , Tempo de Reação
12.
Brain ; 137(Pt 2): 354-65, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24163249

RESUMO

Accumulation of mitochondrial DNA deletions is observed especially in dopaminergic neurons of the substantia nigra during ageing and even more in Parkinson's disease. The resulting mitochondrial dysfunction is suspected to play an important role in neurodegeneration. However, the molecular mechanisms involved in the preferential generation of mitochondrial DNA deletions in dopaminergic neurons are still unknown. To study this phenomenon, we developed novel polymerase chain reaction strategies to detect distinct mitochondrial DNA deletions and monitor their accumulation patterns. Applying these approaches in in vitro and in vivo models, we show that catecholamine metabolism drives the generation and accumulation of these mitochondrial DNA mutations. As in humans, age-related accumulation of mitochondrial DNA deletions is most prominent in dopaminergic areas of mouse brain and even higher in the catecholaminergic adrenal medulla. Dopamine treatment of terminally differentiated neuroblastoma cells, as well as stimulation of dopamine turnover in mice over-expressing monoamine oxidase B both induce multiple mitochondrial DNA deletions. Our results thus identify catecholamine metabolism as the driving force behind mitochondrial DNA deletions, probably being an important factor in the ageing-associated degeneration of dopaminergic neurons.


Assuntos
Catecolaminas/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neurônios Dopaminérgicos/metabolismo , Deleção de Genes , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL
13.
Cell Rep ; 43(6): 114343, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38865247

RESUMO

Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.


Assuntos
Dieta Hiperlipídica , Hiperfagia , Núcleos Septais , Animais , Hiperfagia/metabolismo , Camundongos , Núcleos Septais/metabolismo , Neurônios/metabolismo , Masculino , Ácido gama-Aminobutírico/metabolismo , Pró-Opiomelanocortina/metabolismo , Neurônios GABAérgicos/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Precursores de Proteínas , Receptores Opioides
14.
Nat Metab ; 6(3): 473-493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378998

RESUMO

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.


Assuntos
Neurônios , Pró-Opiomelanocortina , Camundongos , Masculino , Feminino , Animais , Pró-Opiomelanocortina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo
15.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918403

RESUMO

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Assuntos
Neurônios , Nociceptina , Peptídeos Opioides , Receptores Opioides , Animais , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides/genética , Neurônios/metabolismo , Humanos , Camundongos , Masculino , Área Tegmentar Ventral/metabolismo , Receptor de Nociceptina , Células HEK293 , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Ligantes , Técnicas Biossensoriais/métodos
16.
Cell Metab ; 7(4): 291-301, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18396135

RESUMO

Insulin- and leptin-stimulated phosphatidylinositol-3 kinase (PI3K) activation has been demonstrated to play a critical role in central control of energy homeostasis. To delineate the importance of pathways downstream of PI3K specifically in pro-opiomelanocortin (POMC) cell regulation, we have generated mice with selective inactivation of 3-phosphoinositide-dependent protein kinase 1 (PDK1) in POMC-expressing cells (PDK1(DeltaPOMC) mice). PDK1(DeltaPOMC) mice initially display hyperphagia, increased body weight, and impaired glucose metabolism caused by reduced hypothalamic POMC expression. On the other hand, PDK1(DeltaPOMC) mice exhibit progressive, severe hypocortisolism caused by loss of POMC-expressing corticotrophs in the pituitary. Expression of a dominant-negative mutant of FOXO1 specifically in POMC cells is sufficient to ameliorate positive energy balance in PDK1(DeltaPOMC) mice but cannot restore regular pituitary function. These results reveal important but differential roles for PDK1 signaling in hypothalamic and pituitary POMC cells in the control of energy homeostasis and stress response.


Assuntos
Metabolismo Energético , Fatores de Transcrição Forkhead/metabolismo , Pró-Opiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Estresse Fisiológico , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/metabolismo , Corticosterona/farmacologia , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/genética , Deleção de Genes , Regulação da Expressão Gênica , Hiperfagia/genética , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipófise/metabolismo , Pró-Opiomelanocortina/deficiência , Pró-Opiomelanocortina/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
18.
Bio Protoc ; 13(16): e4741, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37638289

RESUMO

Intracellular signaling pathways directly and indirectly regulate neuronal activity. In cellular electrophysiological measurements with sharp electrodes or whole-cell patch clamp recordings, there is a great risk that these signaling pathways are disturbed, significantly altering the electrophysiological properties of the measured neurons. Perforated-patch clamp recordings circumvent this issue, allowing long-term electrophysiological recordings with minimized impairment of the intracellular milieu. Based on previous studies, we describe a superstition-free protocol that can be used to routinely perform perforated patch clamp recordings for current and voltage measurements.

19.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543537

RESUMO

Postsynaptic scaffolding proteins function as central organization hubs, ensuring the synaptic localization of neurotransmitter receptors, trans-synaptic adhesion proteins, and signaling molecules. Gephyrin is the major postsynaptic scaffolding protein at glycinergic and a subset of GABAergic inhibitory synapses. In contrast to cells outside the CNS, where one gephyrin isoform is predominantly expressed, neurons express different splice variants. In this study, we characterized the expression and scaffolding of neuronal gephyrin isoforms differing in the inclusion of the C4 cassettes located in the central C-domain. In hippocampal and cortical neuronal populations, gephyrin P1, lacking additional cassettes, is the most abundantly expressed isoform. In addition, alternative splicing generated isoforms carrying predominantly C4a, and minor amounts of C4c or C4d cassettes. We detected no striking difference in C4 isoform expression between different neuron types and a single neuron can likely express all C4 isoforms. To avoid the cytosolic aggregates that are commonly observed upon exogenous gephyrin expression, we used adeno-associated virus (AAV)-mediated expression to analyze the scaffolding behavior of individual C4 isoforms in murine dissociated hippocampal glutamatergic neurons. While all isoforms showed similar clustering at GABAergic synapses, a thorough quantitative analysis revealed localization differences for the C4c isoform (also known as P2). Specifically, synaptic C4c isoform clusters showed a more distal dendritic localization and reduced occurrence at P1-predominating synapses. Additionally, inhibitory currents displayed faster decay kinetics in the presence of gephyrin C4c compared with P1. Therefore, inhibitory synapse heterogeneity may be influenced, at least in part, by mechanisms relating to C4 cassette splicing.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Camundongos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sinapses/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/metabolismo
20.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277610

RESUMO

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Assuntos
Diabetes Mellitus Tipo 2 , Grelina , Camundongos , Animais , Masculino , Grelina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Camundongos Knockout , Ingestão de Alimentos , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA