Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Pathol ; 190(10): 2165-2176, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693062

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain cancer in adults. A hallmark of GBM is aggressive invasion of tumor cells into the surrounding normal brain. Both the current standard of care and targeted therapies have largely failed to specifically address this issue. Therefore, identifying key regulators of GBM cell migration and invasion is important. The leukemia-associated Rho guanine nucleotide exchange factor (LARG) has previously been implicated in cell invasion in other tumor types; however, its role in GBM pathobiology remains undefined. Herein, we report that the expression levels of LARG and ras homolog family members C (RhoC), and A (RhoA) increase with glial tumor grade and are highest in GBM. LARG and RhoC protein expression is more prominent in invading cells, whereas RhoA expression is largely restricted to cells in the tumor core. Knockdown of LARG by siRNA inhibits GBM cell migration in vitro and invasion ex vivo in organotypic brain slices. Moreover, siRNA-mediated silencing of RhoC suppresses GBM cell migration in vitro and invasion ex vivo, whereas depletion of RhoA enhances GBM cell migration and invasion, supporting a role for LARG and RhoC in GBM cell migration and invasion. Depletion of LARG increases the sensitivity of GBM cells to temozolomide treatment. Collectively, these results suggest that LARG and RhoC may represent unappreciated targets to inhibit glioma invasion.


Assuntos
Movimento Celular/fisiologia , Glioblastoma/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/fisiologia
2.
Neoplasia ; 22(9): 352-364, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32629176

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and carries a discouraging prognosis. Its aggressive and highly infiltrative nature renders the current standard treatment of maximal surgical resection, radiation, and chemotherapy relatively ineffective. Identifying the signaling pathways that regulate GBM migration/invasion and resistance is required to develop more effective therapeutic regimens to treat GBM. Expression of TROY, an orphan receptor of the TNF receptor superfamily, increases with glial tumor grade, inversely correlates with patient overall survival, stimulates GBM cell invasion in vitro and in vivo, and increases resistance to temozolomide and radiation therapy. Conversely, silencing TROY expression inhibits GBM cell invasion, increases sensitivity to temozolomide, and prolongs survival in a preclinical intracranial xenograft model. Here, we have identified for the first time that TROY interacts with JAK1. Increased TROY expression increases JAK1 phosphorylation. In addition, increased TROY expression promotes STAT3 phosphorylation and STAT3 transcriptional activity that is dependent upon JAK1. TROY-mediated activation of STAT3 is independent of its ability to stimulate activity of NF-κB. Inhibition of JAK1 activity by ruxolitinib or knockdown of JAK1 expression by siRNA significantly inhibits TROY-induced STAT3 activation, GBM cell migration, and decreases resistance to temozolomide. Taken together, our data indicate that the TROY signaling complex may represent a potential therapeutic target with the distinctive capacity to exert effects on multiple pathways mediating GBM cell invasion and resistance.


Assuntos
Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Janus Quinase 1/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Janus Quinase 1/genética , Receptores do Fator de Necrose Tumoral/genética , Fator de Transcrição STAT3/genética , Células Tumorais Cultivadas
3.
Neoplasia ; 20(10): 1045-1058, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30219706

RESUMO

Glioblastoma multiforme (GBM) is the most common type of malignant brain tumors in adults and has a dismal prognosis. The highly aggressive invasion of malignant cells into the normal brain parenchyma renders complete surgical resection of GBM tumors impossible, increases resistance to therapeutic treatment, and leads to near-universal tumor recurrence. We have previously demonstrated that TROY (TNFRSF19) plays an important role in glioblastoma cell invasion and therapeutic resistance. However, the potential downstream effectors of TROY signaling have not been fully characterized. Here, we identified PDZ-RhoGEF as a binding partner for TROY that potentiated TROY-induced nuclear factor kappa B activation which is necessary for both cell invasion and survival. In addition, PDZ-RhoGEF also interacts with Pyk2, indicating that PDZ-RhoGEF is a component of a signalsome that includes TROY and Pyk2. PDZ-RhoGEF is overexpressed in glioblastoma tumors and stimulates glioma cell invasion via Rho activation. Increased PDZ-RhoGEF expression enhanced TROY-induced glioma cell migration. Conversely, silencing PDZ-RhoGEF expression inhibited TROY-induced glioma cell migration, increased sensitivity to temozolomide treatment, and extended survival of orthotopic xenograft mice. Furthermore, depletion of RhoC or RhoA inhibited TROY- and PDZ-RhoGEF-induced cell migration. Mechanistically, increased TROY expression stimulated Rho activation, and depletion of PDZ-RhoGEF expression reduced this activation. Taken together, these data suggest that PDZ-RhoGEF plays an important role in TROY signaling and provides insights into a potential node of vulnerability to limit GBM cell invasion and decrease therapeutic resistance.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Quinase 2 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos Nus , Receptores do Fator de Necrose Tumoral/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC/genética , Proteína de Ligação a GTP rhoC/metabolismo
4.
Mol Cancer Res ; 16(2): 322-332, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29117939

RESUMO

Glioblastoma is the most frequent primary brain tumor in adults and a highly lethal malignancy with a median survival of about 15 months. The aggressive invasion of the surrounding normal brain makes complete surgical resection impossible, increases the resistance to radiation and chemotherapy, and assures tumor recurrence. Thus, there is an urgent need to develop innovative therapeutics to target the invasive tumor cells for improved treatment outcomes of this disease. Expression of TROY (TNFRSF19), a member of the tumor necrosis factor (TNF) receptor family, increases with increasing glial tumor grade and inversely correlates with patient survival. Increased expression of TROY stimulates glioblastoma cell invasion in vitro and in vivo and increases resistance to temozolomide and radiation therapy. Conversely, silencing TROY expression inhibits glioblastoma cell invasion, increases temozolomide sensitivity, and prolongs survival in an intracranial xenograft model. Here, a novel complex is identified between TROY and EGFR, which is mediated predominantly by the cysteine-rich CRD3 domain of TROY. Glioblastoma tumors with elevated TROY expression have a statistically positive correlation with increased EGFR expression. TROY expression significantly increases the capacity of EGF to stimulate glioblastoma cell invasion, whereas depletion of TROY expression blocks EGF stimulation of glioblastoma cell invasion. Mechanistically, TROY expression modulates EGFR signaling by facilitating EGFR activation and delaying EGFR receptor internalization. Moreover, the association of EGFR with TROY increases TROY-induced NF-κB activation. These findings substantiate a critical role for the TROY-EGFR complex in regulation of glioblastoma cell invasion.Implications: The TROY-EGFR signaling complex emerges as a potential therapeutic target to inhibit glioblastoma cell invasion. Mol Cancer Res; 16(2); 322-32. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sítios de Ligação , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Regulação para Cima
5.
Oncotarget ; 8(7): 12234-12246, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28103571

RESUMO

The survival of patients diagnosed with glioblastoma (GBM), the most deadly form of brain cancer, is compromised by the proclivity for local invasion into the surrounding normal brain, which prevents complete surgical resection and contributes to therapeutic resistance. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor (TNF) superfamily, can stimulate glioma cell invasion and survival via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the transcription factor NF-κB. To discover small molecule inhibitors that disrupt the TWEAK-Fn14 signaling axis, we utilized a cell-based drug-screening assay using HEK293 cells engineered to express both Fn14 and a NF-κB-driven firefly luciferase reporter protein. Focusing on the LOPAC1280 library of 1280 pharmacologically active compounds, we identified aurintricarboxylic acid (ATA) as an agent that suppressed TWEAK-Fn14-NF-κB dependent signaling, but not TNFα-TNFR-NF-κB driven signaling. We demonstrated that ATA repressed TWEAK-induced glioma cell chemotactic migration and invasion via inhibition of Rac1 activation but had no effect on cell viability or Fn14 expression. In addition, ATA treatment enhanced glioma cell sensitivity to both the chemotherapeutic agent temozolomide (TMZ) and radiation-induced cell death. In summary, this work reports a repurposed use of a small molecule inhibitor that targets the TWEAK-Fn14 signaling axis, which could potentially be developed as a new therapeutic agent for treatment of GBM patients.


Assuntos
Ácido Aurintricarboxílico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Necrose Tumoral/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Ácido Aurintricarboxílico/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Citocina TWEAK , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Sinergismo Farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Estrutura Molecular , Interferência de RNA , Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Receptor de TWEAK , Temozolomida , Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Neoplasia ; 7(5): 435-45, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15967096

RESUMO

Glioblastoma multiforme is extraordinarily aggressive due to the propensity of cells to migrate away from the tumor core into the surrounding normal brain. In this report, we investigated the role of proline-rich tyrosine kinase 2 (Pyk2) and FAK with regard to influencing glioma cell phenotypes. Expression of Pyk2 stimulated glioma cell migration, whereas expression of FAK inhibited glioma cell migration and stimulated cell cycle progression. Pyk2 autophosphorylation was necessary, but not sufficient, to stimulate cellular migration. The N-terminal domain of Pyk2 is required for stimulation of migration as an N-terminally deleted variant of Pyk2 failed to stimulate migration, whereas expression of an autonomous Pyk2 N-terminal domain inhibited cell migration. Substitution of the C-terminal domain of Pyk2 with the corresponding domain of FAK stimulated cell migration as effectively as wild-type Pyk2; however, substitution of the N-terminal domain of Pyk2 with that of FAK inhibited cell migration, substantiating that the N-terminal domain of Pyk2 was required to stimulate migration. Silencing of Pyk2 expression by RNA interference significantly inhibited glioma migration. Cell migration was restored on re-expression of Pyk2, but expression of FAK in Pyk2 knockdown cells failed to restore migration. We conclude that Pyk2 plays a central role in the migratory behavior of glioblastomas.


Assuntos
Glioma/patologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Relação Dose-Resposta a Droga , Epitopos/química , Quinase 1 de Adesão Focal , Quinase 2 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Deleção de Genes , Inativação Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Immunoblotting , Invasividade Neoplásica , Fenótipo , Fosforilação , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Retroviridae/genética , Transdução de Sinais , Fatores de Tempo
7.
Mol Cancer Res ; 1(5): 323-32, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12651906

RESUMO

The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Tirosina Quinases/genética , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Quinase 1 de Adesão Focal , Quinase 2 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Células Tumorais Cultivadas
8.
J Signal Transduct ; 2013: 956580, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24163766

RESUMO

Glioma cell migration correlates with Pyk2 activity, but the intrinsic mechanism that regulates the activity of Pyk2 is not fully understood. Previous studies have supported a role for the N-terminal FERM domain in the regulation of Pyk2 activity as mutations in the FERM domain inhibit Pyk2 phosphorylation. To search for novel protein-protein interactions mediated by the Pyk2 FERM domain, we utilized a yeast two-hybrid genetic selection to identify the mammalian Ste20 homolog MAP4K4 as a binding partner for the Pyk2 FERM domain. MAP4K4 coimmunoprecipitated with Pyk2 and was a substrate for Pyk2 but did not coimmunoprecipitate with the closely related focal adhesion kinase FAK. Knockdown of MAP4K4 expression inhibited glioma cell migration and effectively blocked Pyk2 stimulation of glioma cell. Increased expression of MAP4K4 stimulated glioma cell migration; however, this stimulation was blocked by knockdown of Pyk2 expression. These data support that the interaction of MAP4K4 and Pyk2 is integrated with glioma cell migration and suggest that inhibition of this interaction may represent a potential therapeutic strategy to limit glioblastoma tumor dispersion.

9.
Mol Cancer Res ; 11(8): 865-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23699535

RESUMO

UNLABELLED: Of the features that characterize glioblastoma, arguably none is more clinically relevant than the propensity of malignant glioma cells to aggressively invade into the surrounding normal brain tissue. These invasive cells render complete resection impossible, confer significant resistance to chemo- and radiation-therapy, and virtually assure tumor recurrence. Expression of TROY (TNFRSF19), a member of the TNF receptor superfamily, inversely correlates with patient survival and stimulates glioblastoma cell migration and invasion in vitro. In this study, we report that TROY is overexpressed in glioblastoma tumor specimens and TROY mRNA expression is increased in the invasive cell population in vivo. In addition, inappropriate expression of TROY in mouse astrocytes in vivo using glial-specific gene transfer in transgenic mice induces astrocyte migration within the brain, validating the importance of the TROY signaling cascade in glioblastoma cell migration and invasion. Knockdown of TROY expression in primary glioblastoma xenografts significantly prolonged survival in vivo. Moreover, TROY expression significantly increased resistance of glioblastoma cells to both IR- and TMZ-induced apoptosis via activation of Akt and NF-κB. Inhibition of either Akt or NF-κB activity suppressed the survival benefits of TROY signaling in response to TMZ treatment. These findings position aberrant expression and/or signaling by TROY as a contributor to the dispersion of glioblastoma cells and therapeutic resistance. IMPLICATIONS: Targeting of TROY may increase tumor vulnerability and improve therapeutic response in glioblastoma. Mol Cancer Res; 11(8); 865-74. ©2013 AACR.


Assuntos
Glioblastoma/genética , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Galinhas , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Epilepsia , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 7(6): e39818, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745829

RESUMO

BACKGROUND: Glioblastoma (GB) is the most common and lethal type of primary brain tumor. Clinical outcome remains poor and is essentially palliative due to the highly invasive nature of the disease. A more thorough understanding of the molecular mechanisms that drive glioma invasion is required to limit dispersion of malignant glioma cells. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the potential role of differential expression of microRNAs (miRNA) in glioma invasion by comparing the matched large-scale, genome-wide miRNA expression profiles of migrating and migration-restricted human glioma cells. Migratory and migration-restricted cell populations from seven glioma cell lines were isolated and profiled for miRNA expression. Statistical analyses revealed a set of miRNAs common to all seven glioma cell lines that were significantly down regulated in the migrating cell population relative to cells in the migration-restricted population. Among the down-regulated miRNAs, miR-23b has been reported to target potential drivers of cell migration and invasion in other cell types. Over-expression of miR-23b significantly inhibited glioma cell migration and invasion. A bioinformatics search revealed a conserved target site within the 3' untranslated region (UTR) of Pyk2, a non-receptor tyrosine kinase previously implicated in the regulation of glioma cell migration and invasion. Increased expression of miR-23b reduced the protein expression level of Pyk2 in glioma cells but did not significantly alter the protein expression level of the related focal adhesion kinase FAK. Expression of Pyk2 via a transcript variant missing the 3'UTR in miR-23b-expressing cells partially rescued cell migration, whereas expression of Pyk2 via a transcript containing an intact 3'UTR failed to rescue cell migration. CONCLUSIONS/SIGNIFICANCE: Reduced expression of miR-23b enhances glioma cell migration in vitro and invasion ex vivo via modulation of Pyk2 protein expression. The data suggest that specific miRNAs may regulate glioma migration and invasion to influence the progression of this disease.


Assuntos
Movimento Celular/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Quinase 2 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioblastoma/genética , Humanos , MicroRNAs/genética
11.
Cell Signal ; 23(1): 288-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20849950

RESUMO

The focal adhesion kinase Pyk2 integrates signals from cell adhesion receptors, growth factor receptors, and G-protein-coupled receptors leading to the activation of intracellular signaling pathways that regulate cellular phenotypes. The intrinsic mechanism for the activation of Pyk2 activity remains to be fully defined. Previously, we reported that mutations in the N-terminal FERM domain result in loss of Pyk2 activity and expression of the FERM domain as an autonomous fragment inhibits Pyk2 activity. In the present study, we sought to determine the mechanism that underlies these effects. Utilizing differentially epitope-tagged Pyk2 constructs, we observed that Pyk2 forms oligomeric complexes in cells and that complex formation correlates positively with tyrosine phosphorylation. Similarly, when expressed as an autonomous fragment, the Pyk2 FERM domain formed a complex with other Pyk2 FERM domains but not the FAK FERM domain. When co-expressed with full-length Pyk2, the autonomously expressed Pyk2 FERM domain formed a complex with full-length Pyk2 preventing the formation of Pyk2 oligomers and resulting in reduced Pyk2 phosphorylation. Deletion of the FERM domain from Pyk2 enhanced Pyk2 complex formation and phosphorylation. Together, these data indicate that the Pyk2 FERM domain is involved in the regulation of Pyk2 activity by acting to regulate the formation of Pyk2 oligomers that are critical for Pyk2 activity.


Assuntos
Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/genética , Células HEK293 , Humanos , Mutação , Fosforilação , Multimerização Proteica , Estrutura Terciária de Proteína
12.
Mol Cancer Res ; 8(11): 1558-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20881009

RESUMO

A critical problem in the treatment of malignant gliomas is the extensive infiltration of individual tumor cells into adjacent brain tissues. This invasive phenotype severely limits all current therapies, and to date, no treatment is available to control the spread of this disease. Members of the tumor necrosis factor (TNF) ligand superfamily and their cognate receptors regulate various cellular responses including proliferation, migration, differentiation, and apoptosis. Specifically, the TNFRSF19/TROY gene encodes a type I cell surface receptor that is expressed on migrating or proliferating progenitor cells of the hippocampus, thalamus, and cerebral cortex. Here, we show that levels of TROY mRNA expression directly correlate with increasing glial tumor grade. Among malignant gliomas, TROY expression correlates inversely with overall patient survival. In addition, we show that TROY overexpression in glioma cells activates Rac1 signaling in a Pyk2-dependent manner to drive glioma cell invasion and migration. Pyk2 coimmunoprecipitates with the TROY receptor, and depletion of Pyk2 expression by short hairpin RNA interference oligonucleotides inhibits TROY-induced Rac1 activation and subsequent cellular migration. These findings position aberrant expression and/or signaling by TROY as a contributor, and possibly as a driver, of the malignant dispersion of glioma cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Glioblastoma/metabolismo , Receptores do Fator de Necrose Tumoral/biossíntese , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Quinase 2 de Adesão Focal/deficiência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Imunoprecipitação , Invasividade Neoplásica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transfecção , Proteínas rac1 de Ligação ao GTP/deficiência
13.
Mol Cancer Ther ; 8(6): 1505-14, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19509258

RESUMO

The invasion of malignant glioma cells into the surrounding normal brain precludes effective clinical treatment. In this report, we investigated the role of the NH(2)-terminal FERM domain in the regulation of the promigratory function of Pyk2. We report that the substitution of residues that constitute a small cleft on the surface of the F3 module of the FERM domain do not significantly alter Pyk2 expression but result in the loss of Pyk2 phosphorylation. A monoclonal antibody, designated 12A10, specifically targeting the Pyk2 FERM domain was generated and recognizes an epitope located on the beta5C-alpha1C surface of the F3 module of the FERM domain. Amino acid substitutions in the F3 module that resulted in the loss of Pyk2 phosphorylation also inhibited the binding of 12A10, suggesting that the 12A10 epitope overlaps a site that plays a role in Pyk2 activity. Conjugation of 12A10 to a membrane transport peptide led to intracellular accumulation and inhibition of glioma cell migration in a concentration-dependent manner. A single chain Fv fragment of 12A10 was stable when expressed in the intracellular environment, interacted directly with Pyk2, reduced Pyk2 phosphorylation, and inhibited glioma cell migration in vitro. Stable intracellular expression of the 12A10 scFv significantly extended survival in a glioma xenograft model. Together, these data substantiate a central role for the FERM domain in regulation of Pyk2 activity and identify the F3 module as a novel target to inhibit Pyk2 activity and inhibit glioma progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Movimento Celular/efeitos dos fármacos , Quinase 2 de Adesão Focal/metabolismo , Glioma/tratamento farmacológico , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Epitopos/química , Epitopos/metabolismo , Feminino , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Immunoblotting , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Neurooncol ; 90(2): 181-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18648907

RESUMO

Disease progression of glioblastoma involves a complex interplay between tumor cells and the peri-tumor microenvironment. The propensity of malignant glioma cells to disperse throughout the brain typifies the disease and portends a poor response to surgical resection, radiotherapy, and current chemotherapeutics. The focal adhesion kinases FAK and Pyk2 function as important signaling effectors in glioma through stimulation of pro-migratory and proliferative signaling pathways. In the current study, we examined the importance of Pyk2 and FAK in the pathobiology of malignant glioma in an intracranial xenograft model. We show that mice with xenografts established with glioma cells with specific knockdown of Pyk2 or FAK expression by RNA interference had significantly increased survival compared to control mice. Furthermore, the effect of inhibition of Pyk2 activity in xenografts was compared to the effect of knockdown of Pyk2 expression. Inhibition of Pyk2 activity by stable expression an autonomous FERM domain in glioma cells slowed disease progression in the intracranial xenograft model. In contrast, expression of a variant FERM domain that does not inhibit Pyk2 activity did not alter survival. These results substantiate the disease relevance of both Pyk2 and FAK in glioma and suggest a novel approach to target Pyk2 for therapeutic benefit.


Assuntos
Neoplasias Encefálicas/mortalidade , Quinase 1 de Adesão Focal/deficiência , Quinase 2 de Adesão Focal/deficiência , Glioma/mortalidade , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Modelos Animais de Doenças , Feminino , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias/métodos , RNA Interferente Pequeno/uso terapêutico , Análise de Sobrevida , Transdução Genética
15.
Biochem Biophys Res Commun ; 349(3): 939-47, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16962067

RESUMO

The strong tendency of malignant glioma cells to invade locally into surrounding normal brain precludes effective surgical resection, reduces the efficacy of radiotherapy, and is associated with increased resistance to chemotherapy regimens. We report that the N-terminal FERM domain of Pyk2 regulates its promigratory function. A 3-dimensional model of the Pyk2 FERM domain was generated and mutagenesis studies identified residues essential for Pyk2 promigratory function. Model-based targeted mutations within the FERM domain decreased Pyk2 phosphorylation and reduced the capacity of Pyk2 to stimulate glioma cell migration but did not significantly alter the intracellular distribution of Pyk2. Expression of autonomous Pyk2 FERM domain fragments containing analogous mutations exhibited reduced capacity to inhibit glioma cell migration and Pyk2 phosphorylation relative to expression of an autonomous wild type FERM domain fragment. These results indicate that the FERM domain plays an important role in regulating the functional competency of Pyk2 as a promigratory factor in glioma.


Assuntos
Movimento Celular , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/metabolismo , Glioma/enzimologia , Glioma/patologia , Animais , Linhagem Celular , Chlorocebus aethiops , Quinase 2 de Adesão Focal/genética , Regulação Enzimológica da Expressão Gênica , Glioma/genética , Modelos Moleculares , Mutação/genética , Fosforilação , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA