Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
EMBO Rep ; 24(6): e55556, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37103980

RESUMO

Alzheimer's, Parkinson's and Huntington's diseases can be caused by mutations that enhance protein aggregation, but we still do not know enough about the molecular players of these pathways to develop treatments for these devastating diseases. Here, we screen for mutations that might enhance aggregation in Caenorhabditis elegans, to investigate the mechanisms that protect against dysregulated homeostasis. We report that the stomatin homologue UNC-1 activates neurohormonal signalling from the sulfotransferase SSU-1 in ASJ sensory/endocrine neurons. A putative hormone, produced in ASJ, targets the nuclear receptor NHR-1, which acts cell autonomously in the muscles to modulate polyglutamine repeat (polyQ) aggregation. A second nuclear receptor, DAF-12, functions oppositely to NHR-1 to maintain protein homeostasis. Transcriptomics analyses of unc-1 mutants revealed changes in the expression of genes involved in fat metabolism, suggesting that fat metabolism changes, controlled by neurohormonal signalling, contribute to protein homeostasis. Furthermore, the enzymes involved in the identified signalling pathway are potential targets for treating neurodegenerative diseases caused by disrupted protein homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteostase , Metabolismo dos Lipídeos/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/metabolismo
2.
Chemistry ; 30(18): e202303794, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269422

RESUMO

The iron(III)-catalyzed oxidative coupling of diarylamines to 2,2'-bis(arylamino)-1,1'-biaryls and subsequent twofold palladium(II)-catalyzed oxidative cyclization provide a convergent synthetic route to 1,1'-bicarbazoles. Screening a range of different palladium(II) salts led to palladium(II) acetate, pivalate, and hexafluoroacetylacetonate as the most efficient catalysts. Remarkably, the twofold palladium(II)-catalyzed oxidative cyclization can also be performed under argon. The mechanism for the oxidative cyclization under an inert gas presumably involves regeneration of the catalytically active palladium(II) species by oxidative addition of pivalic acid.

3.
Chemistry ; 29(6): e202203269, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36269611

RESUMO

We describe an iron-catalyzed asymmetric oxidative C-C coupling of diarylamines which proceeds at room temperature with air as final oxidant. Using hexadecafluorophthalocyanine-iron(II) as catalyst in the presence of catalytic amounts of an axially chiral biaryl phosphoric acid, the resulting chiral 2,2'-diamino-1,1'-biaryls are obtained in up to 90 % ee as confirmed by chiral HPLC. A detailed mechanism has been proposed with a radical cation-chiral phosphate ion pair as key intermediate leading to the observed asymmetric induction.

4.
Adv Exp Med Biol ; 1415: 499-505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440078

RESUMO

Rods and cones are photoreceptor neurons in the retina that are required for visual sensation in vertebrates, where proper protein localization and compartmentalization are critical for phototransduction and visual function. In human retinal diseases, improper protein transport to the outer segment (OS) or mislocalization of proteins to the inner segment (IS) could lead to impaired visual responses and photoreceptor cell degeneration, causing a loss of visual function. We showed involvement of an unconventional motor protein, MYO1C, in the proper localization of rhodopsin to the OS, where loss of MYO1C in a mammalian model caused mislocalization of rhodopsin to IS and cell bodies, leading to progressively severe retinal phenotypes. In this study, using modeling and docking analysis, we aimed to identify the protein-protein interaction sites between MYO1C and Rhodopsin to establish a hypothesis that a physical interaction between these proteins is necessary for the proper trafficking of rhodopsin and visual function.


Assuntos
Retina , Rodopsina , Animais , Humanos , Rodopsina/genética , Rodopsina/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Transporte Proteico/fisiologia , Mamíferos/metabolismo , Miosina Tipo I/metabolismo
5.
Chemistry ; 28(21): e202104292, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179270

RESUMO

We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF16 ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.

6.
Chemistry ; 27(67): 16776-16787, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546596

RESUMO

The hexadecafluorophthalocyanine-iron complex FePcF16 was recently shown to convert olefins into ketones in the presence of stoichiometric amounts of triethylsilane in ethanol at room temperature under an oxygen atmosphere. Herein, we describe an extensive mechanistic investigation for the conversion of 2-vinylnaphthalene into 2-acetylnaphthalene as model reaction. A variety of studies including deuterium- and 18 O2 -labeling experiments, ESI-MS, and 57 Fe Mössbauer spectroscopy were performed to identify the intermediates involved in the catalytic cycle of the oxidation process. Finally, a detailed and well-supported reaction mechanism for the FePcF16 -catalyzed Wacker-type oxidation is proposed.

7.
Bioorg Med Chem ; 30: 115928, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33341499

RESUMO

The interaction of actin and myosin is essential for cell migration. We have identified kaempferol and pentahalogenated pseudilins as efficient inhibitors of migration of MDA-MB-231 breast adenocarcinoma cells. The compounds were studied with respect to possible effects on myosin-2-ATPase activity. The pentahalogenated pseudilins inhibited the enzyme activity in vitro. Flavonoids showed no effect on enzyme activity. The polymerization dynamics of actin was measured to test whether the integrity of F-actin is essential for the migration of MDA-MB-231 cells. Quercetin and kaempferol depolymerized F-actin with similar efficiencies as found for the pentahalogenated pseudilins, whereas epigallocatechin showed the weakest effect. As the inhibitory effect on cell migration may be caused by a toxic effect, we have performed a cytotoxicity test and, furthermore, investigated the influence of the test compounds on cardiac function in eleutheroembryos of medaka (Oryzias latipes). Compared with the pentahalogenated pseudilins, the cytotoxic and cardiotoxic effects of flavonoids on medaka embryos were found to be moderate.


Assuntos
Actinas/antagonistas & inibidores , Quempferóis/farmacologia , Miosinas/antagonistas & inibidores , Quercetina/farmacologia , Actinas/metabolismo , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Quempferóis/química , Estrutura Molecular , Miosinas/metabolismo , Quercetina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
8.
Anal Bioanal Chem ; 413(8): 2091-2102, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33575816

RESUMO

Lipid identification is one of the current bottlenecks in lipidomics and lipid profiling, especially for novel lipid classes, and requires multidimensional data for correct annotation. We used the combination of chromatographic and ion mobility separation together with data-independent acquisition (DIA) of tandem mass spectrometric data for the analysis of lipids in the biomedical model organism Caenorhabditis elegans. C. elegans reacts to harsh environmental conditions by interrupting its normal life cycle and entering an alternative developmental stage called dauer stage. Dauer larvae show distinct changes in metabolism and morphology to survive unfavorable environmental conditions and are able to survive for a long time without feeding. Only at this developmental stage, dauer larvae produce a specific class of glycolipids called maradolipids. We performed an analysis of maradolipids using ultrahigh performance liquid chromatography-ion mobility spectrometry-quadrupole-time of flight-mass spectrometry (UHPLC-IM-Q-ToFMS) using drift tube ion mobility to showcase how the integration of retention times, collisional cross sections, and DIA fragmentation data can be used for lipid identification. The obtained results show that combination of UHPLC and IM separation together with DIA represents a valuable tool for initial lipid identification. Using this analytical tool, a total of 45 marado- and lysomaradolipids have been putatively identified and 10 confirmed by authentic standards directly from C. elegans dauer larvae lipid extracts without the further need for further purification of glycolipids. Furthermore, we putatively identified two isomers of a lysomaradolipid not known so far.


Assuntos
Caenorhabditis elegans/química , Glicolipídeos/análise , Animais , Cromatografia Líquida de Alta Pressão , Espectrometria de Mobilidade Iônica , Larva/química , Lipidômica , Espectrometria de Massas
9.
Angew Chem Int Ed Engl ; 60(25): 14083-14090, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33856090

RESUMO

Herein, we describe a convenient and general method for the oxidation of olefins to ketones using either tris(dibenzoylmethanato)iron(III) [Fe(dbm)3 ] or a combination of iron(II) chloride and neocuproine (2,9-dimethyl-1,10-phenanthroline) as catalysts and phenylsilane (PhSiH3 ) as additive. All reactions proceed efficiently at room temperature using air as sole oxidant. This transformation has been applied to a variety of substrates, is operationally simple, proceeds under mild reaction conditions, and shows a high functional-group tolerance. The ketones are formed smoothly in up to 97 % yield and with 100 % regioselectivity, while the corresponding alcohols were observed as by-products. Labeling experiments showed that an incorporated hydrogen atom originates from the phenylsilane. The oxygen atom of the ketone as well as of the alcohol derives from the ambient atmosphere.

10.
Chemistry ; 26(11): 2499-2508, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31858652

RESUMO

A mild procedure for the oxidative C-C cross-coupling of tertiary anilines with phenols is described which provides the products generally in high yields and with excellent selectivity. The reaction is catalyzed by the hexadecafluorinated iron-phthalocyanine complex FePcF16 in the presence of substoichiometric amounts of methanesulfonic acid and ambient air as sole oxidant.

11.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911706

RESUMO

The ratio of amyloid precursor protein (APP)669-711 (Aß-3-40)/Aß1-42 in blood plasma was reported to represent a novel Alzheimer's disease biomarker. Here, we describe the characterization of two antibodies against the N-terminus of Aß-3-x and the development and "fit-for-purpose" technical validation of a sandwich immunoassay for the measurement of Aß-3-40. Antibody selectivity was assessed by capillary isoelectric focusing immunoassay, Western blot analysis, and immunohistochemistry. The analytical validation addressed assay range, repeatability, specificity, between-run variability, impact of pre-analytical sample handling procedures, assay interference, and analytical spike recoveries. Blood plasma was analyzed after Aß immunoprecipitation by a two-step immunoassay procedure. Both monoclonal antibodies detected Aß-3-40 with no appreciable cross reactivity with Aß1-40 or N-terminally truncated Aß variants. However, the amyloid precursor protein was also recognized. The immunoassay showed high selectivity for Aß-3-40 with a quantitative assay range of 22 pg/mL-7.5 ng/mL. Acceptable intermediate imprecision of the complete two-step immunoassay was reached after normalization. In a small clinical sample, the measured Aß42/Aß-3-40 and Aß42/Aß40 ratios were lower in patients with dementia of the Alzheimer's type than in other dementias. In summary, the methodological groundwork for further optimization and future studies addressing the Aß42/Aß-3-40 ratio as a novel biomarker candidate for Alzheimer's disease has been set.


Assuntos
Peptídeos beta-Amiloides/análise , Precursor de Proteína beta-Amiloide/análise , Imunoensaio/métodos , Doença de Alzheimer/metabolismo , Biomarcadores/sangue , Humanos , Testes Imunológicos , Imunoprecipitação , Fragmentos de Peptídeos/análise
12.
Molecules ; 25(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244577

RESUMO

We describe the synthesis and photophysical properties of tetraarylnaphthidines. Our synthetic approach is based on an iron-catalyzed oxidative C-C coupling reaction as the key step using a hexadecafluorinated iron-phthalocyanine complex as a catalyst and air as the sole oxidant. The N,N,N',N'-tetraarylnaphthidines proved to be highly fluorescent with quantum yields of up to 68%.


Assuntos
Técnicas de Química Sintética , Compostos Ferrosos/química , Ferro/química , Processos Fotoquímicos , Catálise , Compostos Ferrosos/síntese química , Fluorescência , Conformação Molecular , Estrutura Molecular , Acoplamento Oxidativo , Análise Espectral
13.
Kidney Int ; 96(1): 139-158, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31097328

RESUMO

Transforming growth factor-ß (TGF-ß) is known to play a critical role in the pathogenesis of many progressive podocyte diseases. However, the molecular mechanisms regulating TGF-ß signaling in podocytes remain unclear. Using a podocyte-specific myosin (Myo)1c knockout, we demonstrate whether Myo1c is critical for TGF-ß-signaling in podocyte disease pathogenesis. Specifically, podocyte-specific Myo1c knockout mice were resistant to fibrotic injury induced by Adriamycin or nephrotoxic serum. Further, loss of Myo1c also protected from injury in the TGF-ß-dependent unilateral ureteral obstruction mouse model of renal interstitial fibrosis. Mechanistic analyses showed that loss of Myo1c significantly blunted TGF-ß signaling through downregulation of canonical and non-canonical TGF-ß pathways. Interestingly, nuclear rather than the cytoplasmic Myo1c was found to play a central role in controlling TGF-ß signaling through transcriptional regulation. Differential expression analysis of nuclear Myo1c-associated gene promoters showed that nuclear Myo1c targeted the TGF-ß responsive gene growth differentiation factor (GDF)-15 and directly bound to the GDF-15 promoter. Importantly, GDF15 was found to be involved in podocyte pathogenesis, where GDF15 was upregulated in glomeruli of patients with focal segmental glomerulosclerosis. Thus, Myo1c-mediated regulation of TGF-ß-responsive genes is central to the pathogenesis of podocyte injury. Hence, inhibiting this process may have clinical application in treating podocytopathies.


Assuntos
Fator 15 de Diferenciação de Crescimento/genética , Nefropatias/patologia , Miosina Tipo I/metabolismo , Podócitos/patologia , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Modelos Animais de Doenças , Doxorrubicina/toxicidade , Feminino , Fibrose , Regulação da Expressão Gênica , Humanos , Nefropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Miosina Tipo I/genética , Podócitos/efeitos dos fármacos , Regiões Promotoras Genéticas , Transcrição Gênica
14.
Chembiochem ; 20(18): 2390-2401, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31026110

RESUMO

Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Ciclo Celular/efeitos dos fármacos , Hidrocarbonetos Clorados/farmacologia , Integrinas/metabolismo , Pirróis/farmacologia , Inibidores da Angiogênese/toxicidade , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrocarbonetos Clorados/toxicidade , Integrinas/genética , Miosina Tipo I/metabolismo , Pirróis/toxicidade , RNA Mensageiro/metabolismo
15.
Chemistry ; 25(60): 13759-13765, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31339614

RESUMO

Dibenzo[cde,opq]rubicene has been synthesized by an eight-step reaction sequence including an iron-mediated [2+2+1] cycloaddition and a flash vacuum pyrolysis as key steps. Two crystal modifications of the S-shaped, planar polycyclic aromatic hydrocarbon have been obtained and characterized by X-ray diffractometry.

16.
Nat Chem Biol ; 13(6): 647-654, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369040

RESUMO

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-ß mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-ß, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.


Assuntos
Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , Glicoesfingolipídeos/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Mutação , Fosforilação
17.
J Cell Sci ; 129(8): 1685-96, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26940917

RESUMO

Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.


Assuntos
Células Epiteliais Alveolares/fisiologia , Exocitose , Miosina Tipo I/metabolismo , Vesículas Secretórias/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Secreções Corporais , Células Cultivadas , Exocitose/genética , Masculino , Fusão de Membrana/genética , Miosina Tipo I/genética , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Chembiochem ; 19(8): 851-864, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29369495

RESUMO

Pentachloropseudilin (PClP) is a chlorinated phenylpyrrole compound that was first isolated from Actinoplanes (ATCC33002), and its structure has been confirmed by chemical synthesis. PClP shows broad antimicrobial activity against Gram-negative and Gram-positive bacteria, protozoa, fungi, and yeast. In mammalian cells, PClP is known to act as a reversible and allosteric inhibitor of myosin 1c (Myo1c). Herein, we report that PCIP is a potent inhibitor of transforming growth factor-ß (TGF-ß)-stimulated signaling. PCIP inhibits TGF-ß-stimulated Smad2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) promoter activation with an IC50 of 0.1 µm in target cells (A549, HepG2, and Mv1Lu cells). In addition, PCIP attenuates TGF-ß-stimulated expression of vimentin, N-cadherin, and fibronectin and, thus, blocks TGF-ß-induced epithelial to mesenchymal transition (EMT) in these cells. Furthermore, cell-surface labeling and immunoblot analysis indicates that PCIP suppresses TGF-ß-stimulated cellular responses by attenuating cell-surface expression of the type II TGF-ß receptor through accelerating caveolae-mediated internalization followed by primarily lysosome-dependent degradation of the receptor, as demonstrated by sucrose density gradient analysis and immune fluorescence staining.


Assuntos
Hidrocarbonetos Clorados/farmacologia , Pirróis/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo II/agonistas , Fator de Crescimento Transformador beta/efeitos dos fármacos , Animais , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Chemistry ; 24(2): 458-470, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29024097

RESUMO

We describe the synthesis of 1,1'- and 2,2'-bicarbazoles by oxidative homocoupling of 2- and 1-hydroxycarbazoles. The oxidative coupling using catalytic amounts of F16 PcFe can be applied to both groups of substrates. Although F16 PcFe generally provides the best yields for the synthesis of 1,1'-bicarbazoles, di-tert-butyl peroxide affords better results for the 2,2'-bicarbazoles. In our study, we have achieved the first syntheses of the biscarbalexines A-C, bisglybomine B, 2,2'-dihydroxy-7,7'-dimethoxy-3,3'-dimethyl-1,1'-bicarbazole, bispyrayafoline C, and bisisomahanine. The iron-catalyzed coupling of koenigine led to an improved synthesis of 8,8''-biskoenigine and afforded an unprecedented decacylic product. Oxidative coupling of 1-hydroxycarbazoles led to bisclausenol, and to the first total syntheses of bismurrayafoline B and D.

20.
J Org Chem ; 83(24): 15136-15143, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30484649

RESUMO

We describe the first enantioselective total synthesis and the assignment of the absolute configuration of the furo[3,2- a]carbazole alkaloid furoclausine-B. As key steps for our approach we used a palladium(II)-catalyzed double C-H-bond activation for the construction of the carbazole framework, a Shi epoxidation, and an intramolecular opening of the epoxide for annulation of the dihydrofuran moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA