Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(5): 540-553, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38509643

RESUMO

Understanding how anthropogenic activities induce changes in the functional traits of arthropod communities is critical to assessing their ecological consequences. However, we largely lack comprehensive assessments of the long-term impact of global-change drivers on the trait composition of arthropod communities across a large number of species and sites. This knowledge gap critically hampers our ability to predict human-driven impacts on communities and ecosystems. Here, we use a dataset of 1.73 million individuals from 877 species to study how four functionally important traits of carabid beetles and spiders (i.e. body size, duration of activity period, tolerance to drought, and dispersal capacity) have changed at the community level across ~40 years in different types of land use and as a consequence of land use changes (that is, urbanisation and loss of woody vegetation) at the landscape scale in Switzerland. The results show that the mean body size in carabid communities declined in all types of land use, with particularly stronger declines in croplands compared to forests. Furthermore, the length of the activity period and the tolerance to drought of spider communities decreased in most land use types. The average body size of carabid communities in landscapes with increased urbanisation in the last ~40 years tended to decrease. However, the length of the activity period, the tolerance to drought, and the dispersal capacity did not change significantly. Furthermore, urbanisation promoted increases in the average dispersal capacities of spider communities. Additionally, urbanisation favoured spider communities with larger body sizes and longer activity periods. The loss of woody areas at the landscape level was associated with trait shifts to carabid communities with larger body sizes, shorter activity periods, higher drought tolerances and strongly decreased dispersal capacities. Decreases in activity periods and dispersal capacities were also found in spider communities. Our study demonstrates that human-induced changes in land use alter key functional traits of carabid and spider communities in the long term. The detected trait shifts in arthropod communities likely have important consequences for their functional roles in ecosystems.


Assuntos
Aranhas , Animais , Aranhas/fisiologia , Suíça , Besouros/fisiologia , Tamanho Corporal , Urbanização , Ecossistema , Secas , Artrópodes/fisiologia , Florestas
2.
Nature ; 548(7666): 206-209, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28783730

RESUMO

Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant-pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant-pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.


Assuntos
Escuridão , Poluição Ambiental/efeitos adversos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Iluminação , Polinização/efeitos da radiação , Animais , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Frutas/crescimento & desenvolvimento , Frutas/efeitos da radiação , Atividades Humanas , Desenvolvimento Vegetal/efeitos da radiação , Reprodução/efeitos da radiação , Suíça
3.
J Environ Manage ; 348: 119416, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931438

RESUMO

Different agri-environmental schemes (AES), such as ecological focus areas and organic farming, have been suggested to reduce the impact of intensive agriculture on the environment and to conserve or even restore farmland biodiversity. However, the effectiveness of such schemes, their ability to actually support biodiversity and associated trade-offs with agricultural production are still debated. We analysed a large dataset from the biodiversity monitoring in the Swiss agricultural landscape to assess the effects of two different grassland AES, i.e., extensively managed ecological focus areas (EFAs versus non-EFAs) and organic farming (versus conventional), on plant diversity, plant community composition and productivity indicators, i.e., weed abundance, forage value and nutrient availability. We also considered environmental factors, i.e., topography and soil conditions, which potentially modulate AES effects on biodiversity. We used in total 1170 plots in permanent grasslands, managed as meadows or pastures. Both AES had significant positive effects on plant diversity. However, EFAs increased plant richness considerably stronger (+6.6 species) than organic farming (+1.8 species). Effects of the two schemes were additive with organic EFA grasslands exhibiting highest plant diversity. Differences in topography partly explained AES effects on diversity as both AES were associated with differences in elevation and slope. Thus, future assessments of the effectiveness of AES need to consider the non-random placement of AES across heterogeneous landscapes. EFA grasslands revealed a considerably reduced agricultural productivity as shown by low forage values and low nutrient availability. Yet, the abundance of agricultural weeds, i.e., agriculturally undesired plant species, was lower in EFA compared to non-EFA grasslands. Productivity indicators were only weakly affected by organic farming and other than for plant diversity, productivity did not differ between organic and conventional EFA grasslands. The positive additive diversity effects of EFAs and organic grassland farming underline the potential of both AES to contribute to biodiversity conservation in agricultural landscapes, though to a different extent. Comparing the effects of the two AES revealed that the lower the reduction in agricultural productivity associated with an AES, the smaller the gains in plant diversity, highlighting the inevitable trade-off between productivity and plant diversity in semi-natural grasslands.


Assuntos
Conservação dos Recursos Naturais , Pradaria , Suíça , Biodiversidade , Agricultura , Plantas Daninhas , Ecossistema
4.
Ecol Lett ; 25(11): 2422-2434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134709

RESUMO

To stop the ongoing decline of farmland biodiversity there are increasing claims for a paradigm shift in agriculture, namely from conserving and restoring farmland biodiversity at field scale (α-diversity) to doing it at landscape scale (γ-diversity). However, knowledge on factors driving farmland γ-diversity is currently limited. Here, we quantified farmland γ-diversity in 123 landscapes and analysed direct and indirect effects of abiotic and land-use factors shaping it using structural equation models. The direction and strength of effects of factors shaping γ-diversity were only partially consistent with what is known about factors shaping α-diversity, and indirect effects were often stronger than direct effects or even opposite. Thus, relationships between factors shaping α-diversity cannot simply be up-scaled to γ-diversity, and also indirect effects should no longer be neglected. Finally, we show that local mitigation measures benefit farmland γ-diversity at landscape scale and are therefore a useful tool for designing biodiversity-friendly landscapes.


Assuntos
Biodiversidade , Ecossistema , Fazendas , Agricultura
5.
Glob Chang Biol ; 28(11): 3674-3682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35152520

RESUMO

Artificial light at night (ALAN) has been and still is rapidly spreading and has become an important component of global change. Although numerous studies have tested its potential biological and ecological impacts on animals, very few studies have tested whether it affects alien and native plants differently. Furthermore, common plant species, and particularly common alien species, are often found to benefit more from additional resources than rare native and rare alien species. Whether this is also the case with regard to increasing light due to ALAN is still unknown. Here, we tested how ALAN affected the performance of common and rare alien and native plant species in Germany directly, and indirectly via flying insects. We grew five common alien, six rare alien, five common native, and four rare native plant species under four combinations of two ALAN (no ALAN vs. ALAN) and two insect-exclusion (no exclusion vs. exclusion) treatments, and compared their biomass production. We found that common plant species, irrespective of their origin, produced significantly more biomass than rare species and that this was particularly true under ALAN. Furthermore, alien species tended to show a slightly stronger positive response to ALAN than native species did (p = .079). Our study shows that common plant species benefited more from ALAN than rare ones. This might lead to competitive exclusion of rare species, which could have cascading impacts on other trophic levels and thus have important community-wide consequences when ALAN becomes more widespread. In addition, the slightly more positive response of alien species indicates that ALAN might increase the risk of alien plant invasions.


Assuntos
Espécies Introduzidas , Poluição Luminosa , Animais , Biomassa , Insetos , Luz , Plantas
6.
Ecol Lett ; 23(10): 1488-1498, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808477

RESUMO

Floral plantings are promoted to foster ecological intensification of agriculture through provisioning of ecosystem services. However, a comprehensive assessment of the effectiveness of different floral plantings, their characteristics and consequences for crop yield is lacking. Here we quantified the impacts of flower strips and hedgerows on pest control (18 studies) and pollination services (17 studies) in adjacent crops in North America, Europe and New Zealand. Flower strips, but not hedgerows, enhanced pest control services in adjacent fields by 16% on average. However, effects on crop pollination and yield were more variable. Our synthesis identifies several important drivers of variability in effectiveness of plantings: pollination services declined exponentially with distance from plantings, and perennial and older flower strips with higher flowering plant diversity enhanced pollination more effectively. These findings provide promising pathways to optimise floral plantings to more effectively contribute to ecosystem service delivery and ecological intensification of agriculture in the future.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Europa (Continente) , Flores , Nova Zelândia , América do Norte , Controle de Pragas
7.
Mol Ecol ; 25(22): 5747-5764, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27664400

RESUMO

Arion vulgaris (syn. A. lusitanicus) is the most destructive pest slug in Europe. The species has been regarded a classic case of an ongoing biological invasion with negative economic and ecological impact in many European countries, but this status has recently been contested. In this study, we assessed mitochondrial and autosomal genetic diversity in populations of A. vulgaris across the entire distribution range in order to characterize its evolutionary history. Mitochondrial diversity in A. vulgaris was strongly reduced compared with the closely related and largely codistributed noninvasive species A. rufus and A. ater, indicating a very rapid spread of A. vulgaris through Europe. Autosomal diversity assessed in 632 individuals from 32 populations decreased towards eastern and northern Europe which is consistent with the reported expansion of the species towards these regions in the last decades. Demographic simulations supported very recent population founding events in most of the European range. The short periods between the first detection of A. vulgaris in different countries and only a very weak association of genetic structuring among populations with geographical distances suggest a human contribution in the ongoing expansion of the slug. We propose that this contribution may ultimately prevent the exact localization of the debated region of origin of A. vulgaris. However, the reclassification of A. vulgaris as noninvasive would be premature. Without counter measures, the Eastern and Northern European countries can expect to see this biological invasion continued in the future.


Assuntos
Gastrópodes/genética , Variação Genética , Genética Populacional , Animais , Europa (Continente) , Efeito Fundador , Espécies Introduzidas , Filogeografia
8.
Glob Chang Biol ; 22(1): 228-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26367396

RESUMO

Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity.


Assuntos
Biodiversidade , Cidades , Besouros/classificação , Hemípteros/classificação , Urbanização , Animais , Betula , Espécies Introduzidas , Suíça
9.
Glob Chang Biol ; 21(4): 1652-67, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25620599

RESUMO

Cities are growing rapidly worldwide, yet a mechanistic understanding of the impact of urbanization on biodiversity is lacking. We assessed the impact of urbanization on arthropod diversity (species richness and evenness) and abundance in a study of six cities and nearby intensively managed agricultural areas. Within the urban ecosystem, we disentangled the relative importance of two key landscape factors affecting biodiversity, namely the amount of vegetated area and patch isolation. To do so, we a priori selected sites that independently varied in the amount of vegetated area in the surrounding landscape at the 500-m scale and patch isolation at the 100-m scale, and we hold local patch characteristics constant. As indicator groups, we used bugs, beetles, leafhoppers, and spiders. Compared to intensively managed agricultural ecosystems, urban ecosystems supported a higher abundance of most indicator groups, a higher number of bug species, and a lower evenness of bug and beetle species. Within cities, a high amount of vegetated area increased species richness and abundance of most arthropod groups, whereas evenness showed no clear pattern. Patch isolation played only a limited role in urban ecosystems, which contrasts findings from agro-ecological studies. Our results show that urban areas can harbor a similar arthropod diversity and abundance compared to intensively managed agricultural ecosystems. Further, negative consequences of urbanization on arthropod diversity can be mitigated by providing sufficient vegetated space in the urban area, while patch connectivity is less important in an urban context. This highlights the need for applying a landscape ecological approach to understand the mechanisms shaping urban biodiversity and underlines the potential of appropriate urban planning for mitigating biodiversity loss.


Assuntos
Biodiversidade , Besouros/fisiologia , Ecossistema , Heterópteros/fisiologia , Aranhas/fisiologia , Distribuição Animal , Animais , Cidades , Suíça
10.
J Anim Ecol ; 84(1): 134-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25041766

RESUMO

The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits.


Assuntos
Comportamento Predatório , Aranhas/fisiologia , Animais , Tamanho Corporal , Isótopos de Carbono/análise , Ecossistema , Isótopos de Nitrogênio/análise , Especificidade da Espécie , Suíça
11.
Ecol Lett ; 17(9): 1168-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25040328

RESUMO

Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.


Assuntos
Ecossistema , Insetos/fisiologia , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Polinização , Animais , Abelhas/fisiologia , Modelos Lineares , Densidade Demográfica
12.
Oecologia ; 172(3): 817-22, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23203510

RESUMO

Endozoochory plays a prominent role for the dispersal of seed plants, and dispersal vectors are well known. However, for taxa such as ferns and bryophytes, endozoochory has only been suggested anecdotally but never tested in controlled experiments. We fed fertile leaflets of three ferns and capsules of four bryophyte species to three slug species. We found that, overall, spores germinated from slug feces in 57.3% of all 89 fern and in 51.3% of all 117 bryophyte samples, showing that the spores survived gut passage of slugs. Moreover, the number of samples within which spores successfully germinated did not differ among plant species but varied strongly among slug species. This opens new ecological perspectives suggesting that fern and bryophyte endozoochory by gastropods is a so-far-overlooked mode of dispersal, which might increase local population sizes of these taxa by spore deposition on suitable substrates.


Assuntos
Briófitas , Gleiquênias , Gastrópodes , Animais , Especificidade da Espécie
13.
Sci Rep ; 13(1): 15114, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704700

RESUMO

Insects are of increasing conservation concern as a severe decline of both biomass and biodiversity have been reported. At the same time, data on where and when they occur in the airspace is still sparse, and we currently do not know whether their density is linked to the type of landscape above which they occur. Here, we combined data of high-flying insect abundance from six locations across Switzerland representing rural, urban and mountainous landscapes, which was recorded using vertical-looking radar devices. We analysed the abundance of high-flying insects in relation to meteorological factors, daytime, and type of landscape. Air pressure was positively related to insect abundance, wind speed showed an optimum, and temperature and wind direction did not show a clear relationship. Mountainous landscapes showed a higher insect abundance than the other two landscape types. Insect abundance increased in the morning, decreased in the afternoon, had a peak after sunset, and then declined again, though the extent of this general pattern slightly differed between landscape types. We conclude that the abundance of high-flying insects is not only related to abiotic parameters, but also to the type of landscapes and its characteristics, which, on a long-term, should be taken into account for when designing conservation measures for insects.


Assuntos
Biodiversidade , Insetos , Animais , Pressão do Ar , Biomassa , Conceitos Meteorológicos
14.
Proc Biol Sci ; 279(1747): 4668-76, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23015630

RESUMO

Invasive alien species might benefit from phenotypic plasticity by being able to (i) maintain fitness in stressful environments ('robust'), (ii) increase fitness in favourable environments ('opportunistic'), or (iii) combine both abilities ('robust and opportunistic'). Here, we applied this framework, for the first time, to an animal, the invasive slug, Arion lusitanicus, and tested (i) whether it has a more adaptive phenotypic plasticity compared with a congeneric native slug, Arion fuscus, and (ii) whether it is robust, opportunistic or both. During one year, we exposed specimens of both species to a range of temperatures along an altitudinal gradient (700-2400 m a.s.l.) and to high and low food levels, and we compared the responsiveness of two fitness traits: survival and egg production. During summer, the invasive species had a more adaptive phenotypic plasticity, and at high temperatures and low food levels, it survived better and produced more eggs than A. fuscus, representing the robust phenotype. During winter, A. lusitanicus displayed a less adaptive phenotype than A. fuscus. We show that the framework developed for plants is also very useful for a better mechanistic understanding of animal invasions. Warmer summers and milder winters might lead to an expansion of this invasive species to higher altitudes and enhance its spread in the lowlands, supporting the concern that global climate change will increase biological invasions.


Assuntos
Adaptação Fisiológica , Gastrópodes/fisiologia , Espécies Introduzidas , Animais , Aquecimento Global , Modelos Biológicos , Fenótipo , Reprodução , Estações do Ano , Temperatura
15.
Nat Commun ; 13(1): 7611, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509742

RESUMO

Climate and land-use changes are main drivers of insect declines, but their combined effects have not yet been quantified over large spatiotemporal scales. We analysed changes in the distribution (mean occupancy of squares) of 390 insect species (butterflies, grasshoppers, dragonflies), using 1.45 million records from across bioclimatic gradients of Switzerland between 1980 and 2020. We found no overall decline, but strong increases and decreases in the distributions of different species. For species that showed strongest increases (25% quantile), the average proportion of occupied squares increased in 40 years by 0.128 (95% credible interval: 0.123-0.132), which equals an average increase in mean occupancy of 71.3% (95% CI: 67.4-75.1%) relative to their 40-year mean occupancy. For species that showed strongest declines (25% quantile), the average proportion decreased by 0.0660 (95% CI: 0.0613-0.0709), equalling an average decrease in mean occupancy of 58.3% (95% CI: 52.2-64.4%). Decreases were strongest for narrow-ranged, specialised, and cold-adapted species. Short-term distribution changes were associated to both climate changes and regional land-use changes. Moreover, interactive effects between climate and regional land-use changes confirm that the various drivers of global change can have even greater impacts on biodiversity in combination than alone. In contrast, 40-year distribution changes were not clearly related to regional land-use changes, potentially reflecting mixed changes in local land use after 1980. Climate warming however was strongly linked to 40-year changes, indicating its key role in driving insect trends of temperate regions in recent decades.


Assuntos
Borboletas , Odonatos , Animais , Aves , Mudança Climática , Biodiversidade , Ecossistema
16.
Nat Commun ; 12(1): 1690, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727549

RESUMO

Artificial light at night has rapidly spread around the globe over the last decades. Evidence is increasing that it has adverse effects on the behavior, physiology, and survival of animals and plants with consequences for species interactions and ecosystem functioning. For example, artificial light at night disrupts plant-pollinator interactions at night and this can have consequences for the plant reproductive output. By experimentally illuminating natural plant-pollinator communities during the night using commercial street-lamps we tested whether light at night can also change interactions of a plant-pollinator community during daytime. Here we show that artificial light at night can alter diurnal plant-pollinator interactions, but the direction of the change depends on the plant species. We conclude that the effect of artificial light at night on plant-pollinator interactions is not limited to the night, but can also propagate to the daytime with so far unknown consequences for the pollinator community and the diurnal pollination function and services they provide.


Assuntos
Ritmo Circadiano/efeitos da radiação , Plantas/efeitos da radiação , Polinização/efeitos da radiação , Animais , Insetos/fisiologia
17.
Ecol Evol ; 11(19): 13487-13500, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646485

RESUMO

Successful pollination in animal-pollinated plants depends on the temporal overlap between flower presentation and pollinator foraging activity. Variation in the temporal dimension of plant-pollinator networks has been investigated intensely across flowering seasons. However, over the course of a day, the dynamics of plant-pollinator interactions may vary strongly due environmental fluctuations. It is usually assumed there is a unimodal, diurnal, activity pattern, while alternative multimodal types of activity patterns are often neglected and deserve greater investigation. Here, we quantified the daily activity pattern of flower visitors in two different habitats contrasting high elevation meadows versus forests in Southwest China to investigate the role of abiotic conditions in the temporal dynamics of plant-pollinator interactions. We examined diurnal activity patterns for the entire pollinator community. Pollinator groups may differ in their ability to adapt to habitats and abiotic conditions, which might be displayed in their patterns of activity. We hypothesized that (a) pollinator communities show multimodal activity patterns, (b) patterns differ between pollinator groups and habitat types, and (c) abiotic conditions explain observed activity patterns. In total, we collected 4,988 flower visitors belonging to six functional groups. There was a bimodal activity pattern when looking at the entire pollinator community and in five out of six flower visitor groups (exempting solitary bees) regardless of habitat types. Bumblebees, honeybees, dipterans, lepidopterans, and other insects showed activity peaks in the morning and afternoon, whereas solitary bees were most active at midday. Activity of all six pollinator groups increased as solar radiation increased and then decreased after reaching a certain threshold. Our findings suggest that in habitats at higher elevations, a bimodal activity pattern of flower visitation is commonly employed across most pollinator groups that are diurnal foragers. This pattern may be caused by insects avoiding overheating due to elevated temperatures when exposed to high solar radiation at midday.

18.
Sci Rep ; 10(1): 11870, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681056

RESUMO

Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.

19.
Sci Rep ; 10(1): 18389, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110135

RESUMO

Rapid human population growth and associated urbanization lead to increased artificial illumination of the environment. By changing the natural light-dark cycle, artificial lighting can affect the functioning of natural ecosystems. Many plants rely on insects in order to reproduce but these insects are known to be disturbed by artificial light. Therefore, plant-insect interactions may be affected when exposed to artificial illumination. These effects can potentially be reduced by using different light spectra than white light. We studied the effect of artificial lighting on plant-insect interactions in the Silene latifolia-Hadena bicruris system using a field set-up with four different light treatments: red, green, white and a dark control. We compared the proportion of fertilized flowers and fertilized ovules as well as the infestation of fruits by Hadena bicruris, a pollinating seed predator. We found no difference in the proportion of fertilized flowers among the treatments. The proportion of fruits infested by H. bicruris was however significantly higher under green and white light and a significantly lower proportion of fertilized ovules was found under green light. We show that artificial light with different colours impacts plant-insect interactions differently, with direct consequences for plant fitness.


Assuntos
Cor , Escuridão , Frutas/parasitologia , Iluminação , Mariposas/fisiologia , Polinização , Animais , Interações Hospedeiro-Parasita
20.
Mol Ecol Resour ; 19(4): 847-862, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30912868

RESUMO

Implementing cost-effective monitoring programs for wild bees remains challenging due to the high costs of sampling and specimen identification. To reduce costs, next-generation sequencing (NGS)-based methods have lately been suggested as alternatives to morphology-based identifications. To provide a comprehensive presentation of the advantages and weaknesses of different NGS-based identification methods, we assessed three of the most promising ones, namely metabarcoding, mitogenomics and NGS barcoding. Using a regular monitoring data set (723 specimens identified using morphology), we found that NGS barcoding performed best for both species presence/absence and abundance data, producing only few false positives (3.4%) and no false negatives. In contrast, the proportion of false positives and false negatives was higher using metabarcoding and mitogenomics. Although strong correlations were found between biomass and read numbers, abundance estimates significantly skewed the communities' composition in these two techniques. NGS barcoding recovered the same ecological patterns as morphology. Ecological conclusions based on metabarcoding and mitogenomics were similar to those based on morphology when using presence/absence data, but different when using abundance data. In terms of workload and cost, we show that metabarcoding and NGS barcoding can compete with morphology, but not mitogenomics which was consistently more expensive. Based on these results, we advocate that NGS barcoding is currently the seemliest NGS method for monitoring of wild bees. Furthermore, this method has the advantage of potentially linking DNA sequences with preserved voucher specimens, which enable morphological re-examination and will thus produce verifiable records which can be fed into faunistic databases.


Assuntos
Abelhas/classificação , Abelhas/genética , Código de Barras de DNA Taxonômico/métodos , DNA Mitocondrial/genética , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Animais , DNA Mitocondrial/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA