Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 30(2): 1002-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26567005

RESUMO

The anterior pituitary hormone prolactin exerts important physiologic actions in the brain. However, the mechanism by which prolactin crosses the blood-brain barrier and enters the brain is not completely understood. On the basis of high expression of the prolactin receptor in the choroid plexus, it has been hypothesized that the receptor may bind to prolactin in the blood and translocate it into the cerebrospinal fluid (CSF). This study aimed to test this hypothesis by investigating transport of (125)I-labeled prolactin ((125)I-prolactin) into the brain of female mice in the presence and absence of the prolactin receptor (PRLR(-/-)). Peripherally administered prolactin rapidly activates brain neurons, as evidenced by prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) in neurons within 30 min of administration. The transport of prolactin into the brain was saturable, with transport effectively blocked only by a very high dose of unlabeled ovine prolactin. Transport was regulated, as in lactating mice with chronically elevated levels of prolactin, the rate of (125)I-prolactin transport into the brain was significantly increased compared to nonlactating controls. There was no change in the rate of (125)I-prolactin transport into the brain in PRLR(-/-) mice lacking functional prolactin receptors compared to control mice, indicating transport is independent of the prolactin receptor. These data suggest that prolactin transport into the brain involves another as yet unidentified transporter molecule. Because CSF levels of (125)I-prolactin were very low, even up to 90 min after administration, the data suggest that CSF is not the major route by which blood prolactin gains access to neurons in the brain.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Prolactina/genética , Transporte Proteico/fisiologia , Receptores da Prolactina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
2.
J Neuroendocrinol ; 31(9): e12702, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30803074

RESUMO

Pregnancy in rodents is associated with hyperphagia, increased fat deposition, elevated leptin concentrations and insensitivity to the satiety action of leptin. To investigate the hormonal mechanisms involved in the development of this state of pregnancy-induced leptin resistance, we have used a pseudopregnancy rat model. We have previously demonstrated that pseudopregnant rats have a normal feeding response to leptin, although, if pseudopregnancy is extended using chronic i.c.v. ovine prolactin infusion along with progesterone implants, then leptin no longer suppresses food intake. The present study aimed to investigate the effect of chronically high lactogen levels, as seen in mid-pregnancy, on leptin-induced activation of hypothalamic Janus kinase/signal transducer and activator of transcription (JAK/STAT) signal transduction and mRNA expression of leptin (LepR-B) and prolactin (Prlr-L) receptors, using pseudopregnant rats chronically infused with ovine prolactin. Groups of virgin (dioestrous) and pseudopregnant rats were treated with chronic i.c.v. infusion of either prolactin (2.5 µg µL-1  h-1 for 5 days) or vehicle (artificial cerebrospinal fluid [aCSF]) via a minipump connected to a cannula surgically implanted into the lateral ventricle. Rats were fasted overnight and then received an i.c.v. injection of leptin (400 ng) or vehicle (aCSF) and were perfused 30 minutes later. In chronic vehicle-infused pseudopregnant rats, i.c.v. leptin increased the number of phosphorylated STAT3 positive cells in the arcuate nucleus and ventromedial nucleus (VMH) of the hypothalamus, similar to all acute-leptin treated virgin groups. This effect of leptin, however, was not observed in the pseudopregnant rats that were chronically infused with prolactin. A quantitative polymerase chain reaction analysis also showed decreased expression of LepR-B in the arcuate and VMH nuclei, as well as decreased Prlr-L in the arcuate nucleus of prolactin-infused "extended pseudopregnancy" rats. These data suggest that the attenuation of the leptin-induced suppression of food intake caused by chronically high lactogen levels in pseudopregnant rats is associated with impaired leptin-induced activation of the JAK/STAT pathway in specific hypothalamic nuclei.


Assuntos
Hipotálamo/metabolismo , Prolactina/metabolismo , Receptores para Leptina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Feminino , Janus Quinases/metabolismo , Gravidez , Prolactina/administração & dosagem , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo
3.
Neurosci Lett ; 445(1): 126-9, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18775475

RESUMO

Isolated adrenal medullary chromaffin cells maintained in culture have been widely used to study neurosecretory events. Many of these studies have been conducted using cells obtained from the bovine adrenal. In this study we have cultured chromaffin cells from an alternative large animal model, the deer, and have conducted the first characterization of secretion from this preparation. Cervine chromaffin cells, preloaded with [3H]noradrenalin, displayed a strong secretory response to the cholinergic agonist carbachol, with a maximal secretion of approximately 28% cell content over 15 min. This response was reproduced by nicotinic but not muscarinic agonists and was similarly inhibited by nicotinic but not muscarinic antagonists. Nicotine-evoked secretion measured over a 15 min time period was inhibited approximately 50% by the L-type Ca2+-channel antagonist nifedipine and approximately 20% by N-type (omega-conotoxin GVIA) or N, P/Q-type (omega-conotoxin MVIIC) antagonists. In contrast the response was unaffected by omega-agatoxin IVA, a P/Q-type antagonist. In addition to nicotinic receptor stimulation, activation of PACAP or histamine H1 receptors resulted in a concentration-dependent increase in secretion. PACAP was approximately two-fold more effective than histamine although both were weaker secretagogues than nicotine. In contrast, cervine chromaffin cells did not respond to angiotensin II or bradykinin, two agents known to stimulate secretion from bovine chromaffin cells. These data provide an initial characterization of the secretory response from cervine adrenal medullary chromaffin cells indicating that there are marked similarities but also potentially significant differences between them and their far more extensively described bovine counterparts.


Assuntos
Catecolaminas/metabolismo , Células Cromafins/metabolismo , Cervos/anatomia & histologia , Glândulas Suprarrenais/citologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Carbacol/farmacologia , Células Cultivadas , Agonistas Colinérgicos/farmacologia , Células Cromafins/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Norepinefrina/metabolismo , Trítio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA