Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112937, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37552603

RESUMO

Lineage plasticity is a form of therapy-induced drug resistance. In prostate cancer, androgen receptor (AR) pathway inhibitors potentially lead to the accretion of tumor relapse with loss of AR signaling and a shift from a luminal state to an alternate program. However, the molecular and signaling mechanisms orchestrating the development of lineage plasticity under the pressure of AR-targeted therapies are not fully understood. Here, a survey of receptor tyrosine kinases (RTKs) identifies ROR2 as the top upregulated RTK following AR pathway inhibition, which feeds into lineage plasticity by promoting stem-cell-like and neuronal networks. Mechanistically, ROR2 activates the ERK/CREB signaling pathway to modulate the expression of the lineage commitment transcription factor ASCL1. Collectively, our findings nominate ROR2 as a potential therapeutic target to reverse the ENZ-induced plastic phenotype and potentially re-sensitize tumors to AR pathway inhibitors.


Assuntos
Recidiva Local de Neoplasia , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Próstata/genética , Transdução de Sinais , Fatores de Transcrição , Antagonistas de Receptores de Andrógenos/uso terapêutico , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
2.
Nat Commun ; 13(1): 2282, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477723

RESUMO

Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs.


Assuntos
Cromatina , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neoplasias da Próstata/patologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Cell Biol ; 23(9): 1023-1034, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489572

RESUMO

Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/fisiologia
4.
Nat Commun ; 12(1): 7349, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934057

RESUMO

Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.


Assuntos
Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Plasticidade Celular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Biomarcadores Tumorais/metabolismo , Carcinoma Neuroendócrino/diagnóstico , Carcinoma Neuroendócrino/tratamento farmacológico , Linhagem Celular Tumoral , Linhagem da Célula/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Estudos de Coortes , Metilação de DNA/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Genoma Humano , Histonas/metabolismo , Humanos , Masculino , Gradação de Tumores , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Organoides/metabolismo , Organoides/patologia , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Longo não Codificante/genética , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica/efeitos dos fármacos
5.
Eur Urol ; 76(5): 546-559, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31445843

RESUMO

CONTEXT: It is increasingly evident that non-protein-coding regions of the genome can give rise to transcripts that form functional layers of the cancer genome. One of most abundant classes in these regions is long noncoding RNAs (lncRNAs). They have gained increasing attention in prostate cancer (PCa) and paved the way for a greater understanding of these cryptic regulators in cancer. OBJECTIVE: To review current research exploring the functional biology of lncRNAs in PCa over the past three decades. EVIDENCE ACQUISITION: A systematic review was performed using PubMed to search for reports with terms "long noncoding RNA", "prostate", and "cancer" over the past 30 yr (1988-2018). EVIDENCE SYNTHESIS: We comprehensively surveyed the literature collected and summarise experiments leading to the characterisation of lncRNAs in PCa. A historical timeline of lncRNA identification is described, where each lncRNA is categorised mechanistically and within the primary areas of carcinogenesis: tumour risk and initiation, tumour promotion, tumour suppression, and tumour treatment resistance. We describe select lncRNAs that exemplify these areas. We also review whether these lncRNAs have a clinical utility in PCa diagnosis, prognosis, and prediction, and as therapeutic targets. CONCLUSIONS: The biology of lncRNA is multifaceted, demonstrating a complex array of molecular and cellular functions. These studies reveal that lncRNAs are involved in every stage of PCa. Their clinical utility for diagnosis, prognosis, and prediction of PCa is well supported, but further evaluation for their therapeutic candidacy is needed. We provide a detailed resource and view inside the lncRNA landscape for other cancer biologists, oncologists, and clinicians. PATIENT SUMMARY: In this study, we review current knowledge of the non-protein-coding genome in prostate cancer (PCa). We conclude that many of these regions are functional and a source of accurate biomarkers in PCa. With a strong research foundation, they hold promise as future therapeutic targets, yet clinical trials are necessary to determine their intrinsic value to PCa disease management.


Assuntos
Descoberta de Drogas , Neoplasias da Próstata , RNA Longo não Codificante , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Humanos , Masculino , Farmacogenética , Utilização de Procedimentos e Técnicas , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , RNA Longo não Codificante/análise , RNA Longo não Codificante/genética
6.
Gigascience ; 7(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29757368

RESUMO

Background: Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of lncRNAs during NEtD and their clinical associations were unexplored. Results: We implemented a next-generation sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n = 37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified 821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD) patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1 in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18 years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified patients undergoing ADT based on patient outcome. Discussion: To date, a comprehensive characterization of the dynamic landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.


Assuntos
Tumores Neuroendócrinos/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Animais , Sítios de Ligação , Transdiferenciação Celular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Metástase Neoplásica , Tumores Neuroendócrinos/patologia , Motivos de Nucleotídeos/genética , Fenótipo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA