Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1360698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979428

RESUMO

Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.


Assuntos
Vírus da Influenza A , Infecções por Orthomyxoviridae , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Camundongos , Vírus da Influenza A/imunologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Camundongos Endogâmicos C57BL , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Modelos Animais de Doenças
2.
Front Cell Infect Microbiol ; 13: 1264983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965261

RESUMO

The recent COVID-19 pandemic again highlighted the urgent need for broad-spectrum antivirals, both for therapeutic use in acute viral infection and for pandemic preparedness in general. The targeting of host cell factors hijacked by viruses during their replication cycle presents one possible strategy for development of broad-spectrum antivirals. By inhibiting the Raf/MEK/ERK signaling pathway, a central kinase cascade of eukaryotic cells, which is being exploited by numerous viruses of different virus phyla, the small-molecule MEK inhibitor zapnometinib has the potential to address this need. We here performed a side-by-side comparison of the antiviral efficacy of zapnometinib against IAV and SARS-CoV-2 to determine the concentration leading to 50% of its effect on the virus (EC50) and the concentration leading to 50% reduction of ERK phosphorylation (IC50) in a comparable manner, using the same experimental conditions. Our results show that the EC50 value and IC50 value of zapnometinib are indeed lower for IAV compared to SARS-CoV-2 using one representative strain for each. The results suggest that IAV's replication has a stronger dependency on an active Raf/MEK/ERK pathway and, thus, that IAV is more susceptible to treatment with zapnometinib than SARS-CoV-2. With zapnometinib's favorable outcome in a recent phase II clinical trial in hospitalized COVID-19 patients, the present results are even more promising for an upcoming phase II clinical trial in severe influenza virus infection.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Humanos , Sistema de Sinalização das MAP Quinases , SARS-CoV-2 , Influenza Humana/tratamento farmacológico , Pandemias , Replicação Viral , Transdução de Sinais , Antivirais/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
3.
Front Pharmacol ; 13: 893635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784712

RESUMO

The mitogen-activated protein kinase (MEK) inhibitor zapnometinib is in development to treat acute viral infections like COVID-19 and influenza. While the antiviral efficacy of zapnometinib is well documented, further data on target engagement/pharmacodynamics (PD) and pharmacokinetics (PK) are needed. Here, we report zapnometinib PK and PD parameters in mice, hamsters, dogs, and healthy human volunteers. Mice received 25 mg/kg/day zapnometinib (12.5 mg/kg p. o. twice daily, 8 h interval). Syrian hamsters received 30 mg/kg (15 mg/kg twice daily) or 60 mg/kg/day once daily. Beagle dogs were administered 300 mg/kg/day, and healthy human volunteers were administered 100, 300, 600 and 900 mg zapnometinib (once daily p. o.). Regardless of species or formulation, zapnometinib maximum plasma concentration (Cmax) was reached between 2-4 h after administration with an elimination half-life of 4-5 h in dogs, 8 h in mice or hamsters and 19 h in human subjects. Doses were sufficient to cause up to 80% MEK inhibition. Across all species approximately 10 µg/ml zapnometinib was appropriate to inhibit 50% of peripheral blood mononuclear cells (PBMC) MEK activity. In mice, a 50%-80% reduction of MEK activity was sufficient to reduce influenza virus titer in the lungs by more than 90%. In general, while >50% MEK inhibition was reached in vivo at most doses, 80% inhibition in PBMCs required significantly higher doses and appeared to be the practical maximal level obtained in vivo. However, the period of reduced phosphorylated extracellular-signal regulated kinase (pERK), a measure of MEK inhibition, was maintained even after elimination of zapnometinib from plasma, suggesting a sustained effect on MEK consistent with regulatory effects or a slow off-rate. These data suggest a target plasma Cmax of at least 10 µg/ml zapnometinib in further clinical studies.

4.
Front Cell Dev Biol ; 10: 1063692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578787

RESUMO

The Raf/MEK/ERK signaling pathway plays a key role in regulating cellular proliferation, differentiation, apoptosis, cytokine production, and immune responses. However, it is also involved in diseases such as cancer, and numerous viruses rely on an active Raf/MEK/ERK pathway for propagation. This pathway, and particularly MEK1/2, are therefore promising therapeutic targets. Assessment of target engagement is crucial to determine pharmacodynamics or the efficacy of a MEK1/2 inhibitor. In the field of infectious diseases, this is usually first determined in clinical trials with healthy volunteers. One method to detect MEK1/2 inhibitor target engagement is to assess the degree of ERK1/2 phosphorylation, as ERK1/2 is the only known substrate of MEK1/2. As healthy subjects, however, only feature a low baseline MEK1/2 activation and therefore low ERK1/2 phosphorylation in most tissues, assessing target engagement is challenging, and robust methods are urgently needed. We hence developed a method using PBMCs isolated from whole blood of healthy blood donors, followed by ex vivo treatment with the MEK1/2 inhibitor zapnometinib and stimulation with PMA to first inhibit and then induce MEK1/2 activation. As PMA cannot activate MEK1/2 upon MEK1/2 inhibition, MEK1/2 inhibition results in impaired MEK1/2 activation. In contrast, PMA stimulation without MEK1/2 inhibition results in high MEK1/2 activation. We demonstrated that, without MEK1/2 inhibitor treatment, MEK1/2 stimulation with PMA induces high MEK1/2 activation, which is clearly distinguishable from baseline MEK1/2 activation in human PBMCs. Furthermore, we showed that treatment with the MEK1/2 inhibitor zapnometinib maintains the MEK1/2 activation at approximately baseline level despite subsequent stimulation with PMA. As our protocol is easy to follow and preserves the cells in an in vivo-like condition throughout the whole handling process, this approach can be a major advance for the easy assessment of MEK1/2 inhibitor target engagement in healthy probands for clinical drug development.

5.
Microorganisms ; 9(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802603

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic effects daily dental work. Therefore, infection control measures are necessary to prevent infection of dental personnel during dental treatments. The use of a preprocedural mouth rinse with chlorhexidine (CHX), cetylpyridinium chloride (CPC), or hydrogen peroxide (H2O2) solution for 30-60 s may reduce the viral load and may protect the personnel in a dental practice. In the present study the virucidal effect of the mouth rinsing solutions ViruProX® with 0.05% CPC and 1.5% H2O2 and BacterX® pro containing 0.1% CHX, 0.05% CPC, and 0.005% sodium fluoride (F-) was investigated in vitro. The mouth rinsing solutions successfully inactivated infectious SARS-CoV-2 particles, the causative agent of coronavirus disease 2019 (COVID-19), within 30 s. To determine the effective components, CHX, CPC, H2O2, and a combination of CHX and CPC, were tested against SARS-CoV-2 in addition. While a combination of CPC and CHX as well as CPC alone led to a significant reduction of infectious viral particles, H2O2 and CHX alone had no virucidal effect against SARS-CoV-2. It can be assumed that preprocedural rinsing of the mouth with ViruProX® or BacterX® pro will reduce the viral load in the oral cavity and could thus lower the transmission of SARS-CoV-2 in dental practice.

6.
Antiviral Res ; 178: 104806, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304723

RESUMO

Antiviral therapies against influenza are required, especially for high-risk patients, severe influenza and in case of highly pathogenic influenza virus (IV) strains. However, currently, licensed drugs that target the virus directly are not very effective and often lead to the development of resistant IV variants. This may be overcome by targeting host cell factors that are required for IV propagation. IV induces a variety of host cell signaling cascades, such as the Raf/MEK/ERK kinase pathway. The activation of this pathway is necessary for IV propagation. MEK-inhibitors block the activation of the pathway on the bottleneck of the signaling cascade leading to impaired virus propagation. In the present study, we aimed to compare the antiviral potency and bioavailability of the MEK-inhibitor CI-1040 versus its major active metabolite ATR-002, in vitro as well as in the mouse model. In cell culture assays, an approximately 10-fold higher concentration of ATR-002 is required to generate the same antiviral activity as for CI-1040. Interestingly, we observed that considerably lower concentrations of ATR-002 were required to achieve a reduction of the viral load in vivo. Pharmacokinetic studies with ATR-002 and CI-1040 in mice have found the Cmax and AUC to be far higher for ATR-002 than for CI-1040. Our results thereby demonstrate the in vivo superiority of the active metabolite ATR-002 over CI-1040 as an antiviral agent despite its weaker cell membrane permeability. Therefore, ATR-002 is an attractive candidate for development as an efficient antiviral agent, especially given the fact that a treatment based on cellular pathway inhibition would be far less likely to lead to viral drug resistance.


Assuntos
Antivirais/farmacologia , Fenamatos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Infecções por Orthomyxoviridae/virologia , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Benzamidas/farmacocinética , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenamatos/farmacocinética , Fenamatos/uso terapêutico , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/virologia , Leucócitos Mononucleares , Pulmão/virologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Infecções por Orthomyxoviridae/tratamento farmacológico , Fosforilação , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA