Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; 8(6): e0074223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37916816

RESUMO

IMPORTANCE: Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.


Assuntos
Cianobactérias , Trichodesmium , Trichodesmium/genética , Cianobactérias/genética , Fixação de Nitrogênio
2.
Trends Microbiol ; 30(3): 229-240, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34175176

RESUMO

Iron is an essential micronutrient for the ecologically important photoautotrophic cyanobacteria which are found across diverse aquatic environments. Low concentrations and poor bioavailability of certain iron species exert a strong control on cyanobacterial growth, affecting ecosystem structure and biogeochemical cycling. Here, we review the iron-acquisition pathways cyanobacteria utilize for overcoming these challenges. As the molecular details of cyanobacterial iron transport are being uncovered, an overall scheme of how cyanobacteria handle and exploit this scarce and redox-active micronutrient is emerging. Importantly, the range of biological solutions used by cyanobacteria to increase iron fluxes goes beyond transport and includes behavioral traits of colonial cyanobacteria and intricate cyanobacteria-bacteria interactions.


Assuntos
Cianobactérias , Ecossistema , Cianobactérias/metabolismo , Ferro/metabolismo , Oxirredução
3.
iScience ; 25(1): 103587, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005537

RESUMO

Trichodesmium, a globally important, N2-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply Trichodesmium with nutrients. Recently, we reported a selectivity in particle collection enabling Trichodesmium to center iron-rich minerals and optimize its nutrient utilization. In this follow-up study we examined if colonies select Phosphorus (P) minerals. We incubated 1,200 Trichodesmium colonies from the Red Sea with P-free CaCO3, P-coated CaCO3, and dust, over an entire bloom season. These colonies preferably interacted, centered, and retained P-coated CaCO3 compared with P-free CaCO3. In both studies, Trichodesmium clearly favored dust over all other particles tested, whereas nutrient-free particles were barely collected or retained, indicating that the colonies sense the particle composition and preferably collect nutrient-rich particles. This unique ability contributes to Trichodesmium's current ecological success and may assist it to flourish in future warmer oceans.

4.
Front Microbiol ; 13: 879970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707175

RESUMO

Trichodesmium are filamentous cyanobacteria of key interest due to their ability to fix carbon and nitrogen within an oligotrophic marine environment. Their blooms consist of a dynamic assemblage of subpopulations and colony morphologies that are hypothesized to occupy unique niches. Here, we assessed the poorly studied diversity of Trichodesmium in the Red Sea, based on metagenome-assembled genomes (MAGs) and hetR gene-based phylotyping. We assembled four non-redundant MAGs from morphologically distinct Trichodesmium colonies (tufts, dense and thin puffs). Trichodesmium thiebautii (puffs) and Trichodesmium erythraeum (tufts) were the dominant species within these morphotypes. While subspecies diversity is present for both T. thiebautii and T. erythraeum, a single T. thiebautii genotype comprised both thin and dense puff morphotypes, and we hypothesize that this phenotypic variation is likely attributed to gene regulation. Additionally, we found the rare non-diazotrophic clade IV and V genotypes, related to Trichodesmium nobis and Trichodesmium miru, respectively that likely occurred as single filaments. The hetR gene phylogeny further indicated that the genotype in clade IV could represent the species Trichodesmium contortum. Importantly, we show the presence of hetR paralogs in Trichodesmium, where two copies of the hetR gene were present within T. thiebautii genomes. This may lead to the overestimation of Trichodesmium diversity as one of the copies misidentified T. thiebautii as Trichodesmium aureum. Taken together, our results highlight the importance of re-assessing Trichodesmium taxonomy while showing the ability of genomics to capture the complex diversity and distribution of Trichodesmium populations.

5.
FEMS Microbiol Ecol ; 96(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459302

RESUMO

Iron (Fe) limitation is known to affect heterotrophic bacteria within the respiratory electron transport chain, therefore strongly impacting the overall intracellular energy production. We investigated whether the gene expression pattern of the light-sensitive proton pump, proteorhodopsin (PR), is influenced by varying light, carbon and Fe concentrations in the marine bacterium Photobacterium angustum S14 and whether PR can alleviate the physiological processes associated with Fe starvation. Our results show that the gene expression of PR increases as cells enter the stationary phase, irrespective of Fe-replete or Fe-limiting conditions. This upregulation is coupled to a reduction in cell size, indicating that PR gene regulation is associated with a specific starvation-stress response. We provide experimental evidence that PR gene expression does not result in an increased growth rate, cell abundance, enhanced survival or ATP concentration within the cell in either Fe-replete or Fe-limiting conditions. However, independent of PR gene expression, the presence of light did influence bacterial growth rates and maximum cell abundances under varying Fe regimes. Our observations support previous results indicating that PR phototrophy seems to play an important role within the stationary phase for several members of the Vibrionaceae family, but that the exact role of PR in Fe limitation remains to be further explored.


Assuntos
Carbono , Photobacterium , Ferro , Rodopsina , Rodopsinas Microbianas
6.
Front Microbiol ; 10: 1255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231340

RESUMO

Benthic diatoms are dominant primary producers in intertidal mudflats and constitute a major source of organic carbon to consumers and decomposers residing within these ecosystems. They typically form biofilms whose species richness, community composition and productivity can vary in response to environmental drivers and their interactions with other organisms (e.g., grazers). Here, we investigated whether bacteria can affect diatom community composition and vice versa, and how this could influence the biodiversity-productivity relation. Using axenic experimental communities with three common benthic diatoms (Cylindrotheca closterium, Navicula phyllepta, and Seminavis robusta), we observed an increase in algal biomass production in diatom co-cultures in comparison to monocultures. The presence of bacteria decreased the productivity of diatom monocultures while bacteria did not seem to affect the overall productivity of diatoms grown in co-cultures. The effect of bacteria on diatom growth, however, appeared to be species-specific, resulting in compositional shifts when different diatom species were grown together. The effect of the diatoms on the bacteria also proved to be species-specific as each diatom species developed a bacterial community that differed in its composition. Together, our results suggest that interactions between bacteria and diatoms residing in mudflats are a key factor in the structuring of the benthic microbial community composition and the overall functioning of that community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA