Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 17(8): 2987-2999, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32559108

RESUMO

In this study, we report on the influence of mechanochemical activation on the chemical stability of amorphous solid dispersions made up of indomethacin and hydroxypropyl methyl cellulose (HPMC), poly(vinylpyrrolidone) (PVP), poly(vinylpyrrolidone vinylacetate) (PVPVA), or Soluplus. In agreement with our recently published work, all applied carriers were found to be prone to polymer degradation. Covalent bonds within the polymers were cleaved and mechanoradicals were generated. Furthermore, decomposition of indomethacin was also observed but occurred only in the presence of polymers. Hence, it is proposed that the generated mechanoradicals from the polymers are responsible for the chemical degradation of indomethacin. Our study also strongly suggests the existence of a critical polymer- and process-dependent molecular weight limit "M∞", below which only limited mechanodegradation takes place since the lower-molecular-weight polymer PVP K12PF had a less profound influence on the degradation of indomethacin in comparison to PVP K25.


Assuntos
Portadores de Fármacos/química , Indometacina/química , Polímeros/química , Derivados da Hipromelose/química , Peso Molecular , Polietilenoglicóis/química , Polivinil/química , Povidona/análogos & derivados , Povidona/química , Pirrolidinas/química
2.
Mol Pharm ; 17(3): 1001-1013, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961692

RESUMO

In this work, a chemical (and physical) evaluation of cryogenic milling to manufacture amorphous solid dispersions (ASDs) is provided to support novel mechanistic insights in the cryomilling process. Cryogenic milling devices are considered as reactors in which both physical transitions (reduction in crystallite size, polymorphic transformations, accumulation of crystallite defects, and partial or complete amorphization) and chemical reactions (chemical decomposition, etc.) can be mechanically triggered. In-depth characterization of active pharmaceutical ingredient (API) (content determination) and polymer (viscosity, molecular weight, dynamic vapor sorption, Fourier transform infrared spectroscopy, dynamic light scattering, and ANS and thioflavin T staining) chemical decomposition demonstrated APIs to be more prone to chemical degradation in case of presence of a polymer. A significant reduction of the polymer chain length was observed and in case of BSA denaturation/aggregation. Hence, mechanochemical activation process(es) for amorphization and ASD manufacturing cannot be regarded as a mild technique, as generally put forward, and one needs to be aware of chemical degradation of both APIs and polymers.


Assuntos
Portadores de Fármacos/química , Composição de Medicamentos/métodos , Gelatina/química , Derivados da Hipromelose/química , Povidona/química , Soroalbumina Bovina/química , Cinarizina/química , Cristalização , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Fenofibrato/química , Vidro/química , Indometacina/química , Estrutura Molecular , Peso Molecular , Naproxeno/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura de Transição , Viscosidade
3.
Langmuir ; 33(34): 8447-8454, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28767248

RESUMO

Wetting dynamics drive numerous processes involving liquids in contact with solid substrates with a wide range of geometries. The spreading dynamics of organic liquids and liquid metals at, respectively, room temperature and >1000 °C have been studied extensively, both experimentally and numerically; however, almost no attention has been paid to the wetting behavior of molten drops of thermoplastic polymers, despite its importance, for example, in the processing of fiber-reinforced polymer composites. Indeed, the ability of classical theories of dynamic wetting, that is, the hydrodynamic and the molecular-kinetic theories, to model these complex liquids is unknown. We have therefore investigated the spreading dynamics on glass, over temperatures between 200 and 260 °C, of two thermoplastics: polypropylene (PP) and poly(vinylidene fluoride) (PVDF). PP and PVDF showed, respectively, the highest and lowest slip lengths due to their different interactions with the glass substrate. The jump lengths of PP and PVDF are comparable to their Kuhn segment lengths, suggesting that the wetting process of these polymers is mediated by segmental displacements. The present work not only provides evidence of the suitability of the classical models to model dynamic wetting of molten polymers but also advances our understanding of the wetting dynamics of molten thermoplastics at the liquid/solid interface.

4.
Int J Pharm ; 574: 118885, 2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31765775

RESUMO

The relatively simple technique of coaxial electrospraying allows to produce core-shell microparticles with potentially high encapsulation efficiencies. In this study, amorphous solid dispersions of a hydroxypropyl methylcellulose or polyvinlypyrrolidone based polymer matrix containing the active pharmaceutical ingredient darunavir were coated with a gastro-resistant shell polymer that does not dissolve at lower pH present in the stomach, but only later at a higher pH in the small intestine. A multitude of shell polymers were tested with the aim to identify a material that limits the drug release to less than 10% after two hours at a pH of 1 to comply with the European Pharmacopoeia regarding gastro-resistant formulations. In parallel, the core-shell structure of the particles was determined with confocal imaging and their surface morphology with SEM imaging. While the structural analysis revealed significant differences between the different formulations, all investigated shell polymers exhibited a burst drug release followed by a slow release for the remainder of a two hour period. Ultimately, the shell copolymer poly(methacrylic acid-co-methyl methacrylate), in particular for a monomer ratio 1/2, resulted consistently in darunavir release below the 10% upper limit compared to the other tested polymers, where such low releases were inaccessible. Further investigation of this shell polymer revealed that both the monomer ratio of methacrylic acid to methyl methacrylate in the copolymer and the utilized solvent are determining factors in the release performance of the final particles.


Assuntos
Darunavir/química , Mucosa Gástrica/metabolismo , Estômago/efeitos dos fármacos , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Derivados da Hipromelose/química , Metacrilatos/química , Tamanho da Partícula , Polímeros/química , Solventes/química
5.
Pharmaceutics ; 12(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635464

RESUMO

Spray drying and electrospraying are well-established drying processes that already have proven their value in the pharmaceutical field. However, there is currently still a lack of knowledge on the fundamentals of the particle formation process, thereby hampering fast and cost-effective particle engineering. To get a better understanding of how functional particles are formed with respect to process and formulation parameters, it is indispensable to offer a comprehensive overview of critical aspects of the droplet drying and particle formation process. This review therefore closely relates single droplet drying to pharmaceutical applications. Although excellent reviews exist of the different aspects, there is, to the best of our knowledge, no single review that describes all steps that one should consider when trying to engineer a certain type of particle morphology. The findings presented in this article have strengthened the predictive value of single droplet drying for pharmaceutical drying applications like spray drying and electrospraying. Continuous follow-up of the particle formation process in single droplet drying experiments hence allows optimization of manufacturing processes and particle engineering approaches and acceleration of process development.

6.
Eur J Pharm Biopharm ; 130: 96-107, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29928980

RESUMO

The interest in using electrospraying as a manufacturing method for amorphous solid dispersions has grown remarkably. However, the impact of formulation and process parameters needs further clarification. In this study, amorphous solid dispersions of darunavir and hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMC AS) and polyvinylpyrrolidone K-30 (PVP) were prepared with electrospraying and spray drying, in order to compare both solvent based manufacturing techniques. Our results revealed that electrospraying was as successful as spray drying. The formulations prepared with the two methods were amorphous and had similar characteristics concerning the residual solvent and drug release. Although differences in the morphology and the particle size distributions were observed, this was not reflected in the pharmaceutical performance of the formulations. Electrosprayed amorphous solid dispersions made up of darunavir and PVP were studied in more detail by means of a full factorial experimental design. The impact of two process and two formulation parameters on the properties of the amorphous solid dispersions was determined. The feed flow rate had a significant effect on the diameter and morphology of the particles whereas the tip-to-collector distance had no significant impact within the tested range. The drug loading influenced the homogeneity and the residual solvent, and the total solids concentration had an impact on the homogeneity and the morphology.


Assuntos
Química Farmacêutica/métodos , Darunavir/administração & dosagem , Inibidores da Protease de HIV/administração & dosagem , Polímeros/química , Darunavir/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Inibidores da Protease de HIV/química , Derivados da Hipromelose/química , Metilcelulose/análogos & derivados , Metilcelulose/química , Tamanho da Partícula , Povidona/química , Solventes/química , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA