Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Immunol ; 18(1): 104-113, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27820809

RESUMO

The checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the TH17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, TH17 cells regulated the expression of ß-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged. Asymptomatic humans with rheumatoid arthritis (RA)-specific autoantibodies showed identical changes in the activity and glycosylation of autoreactive IgG antibodies before shifting to the inflammatory phase of RA; thus, our results identify an IL-23-TH17 cell-dependent pathway that controls autoantibody activity and unmasks a preexisting breach in immunotolerance.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Tolerância Imunológica , Imunoglobulina G/metabolismo , Interleucina-23/metabolismo , Células Th17/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Glicosilação , Humanos , Interleucinas/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Interleucina 22
2.
J Immunol ; 210(2): 158-167, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36480251

RESUMO

Abs can be glycosylated in both their Fc and Fab regions with marked effects on Ab function and binding. High levels of IgG Fab glycosylation are associated with malignant and autoimmune conditions, exemplified by rheumatoid arthritis and highly Fab-glycosylated (∼90%) anti-citrullinated protein Abs (ACPAs). Important properties of IgG, such as long half-life and placental transport, are facilitated by the human neonatal Fc receptor (hFcRn). Although it is known that glycosylation of Abs can affect binding to Fc receptors, little is known on the impact of IgG Fab glycosylation on hFcRn binding and transplacental transport. Therefore, we analyzed the interaction between hFcRn and IgG with and without Fab glycans in vitro with various methods as well as in vivo by studying placental transfer of Fab-glycosylated Abs from mothers to newborns. No effect of Fab glycosylation on IgG binding to hFcRn was found by surface plasmon resonance and hFcRn affinity chromatography. In contrast, studies in a cell membrane context revealed that Fab glycans negatively impacted IgG-hFcRn interaction. In line with this, we found that Fab-glycosylated IgGs were transported ∼20% less efficiently across the placenta. This appeared to be a general phenomenon, observed for ACPAs, non-ACPAs, as well as total IgG in rheumatoid arthritis patients and healthy controls. Our results suggest that, in a cellular context, Fab glycans inhibit IgG-hFcRn interaction and thus negatively affect the transplacental transfer of IgG. As Fab-glycosylated Abs are frequently associated with autoimmune and malignant disorders and may be potentially harmful, this might encompass a regulatory mechanism, limiting the half-life and transport of such Abs.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Gravidez , Humanos , Feminino , Recém-Nascido , Placenta , Receptores Fc/metabolismo , Imunoglobulina G , Antígenos de Histocompatibilidade Classe I , Polissacarídeos
3.
Immunology ; 171(3): 428-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38097893

RESUMO

The type and strength of effector functions mediated by immunoglobulin G (IgG) antibodies rely on the subclass and the composition of the N297 glycan. Glycosylation analysis of both bulk and antigen-specific human IgG has revealed a marked diversity of the glycosylation signatures, including highly dynamic patterns as well as long-term stability of profiles, yet information on how individual B cell clones would contribute to this diversity has hitherto been lacking. Here, we assessed whether clonally related B cells share N297 glycosylation patterns of their secreted IgG. We differentiated single antigen-specific peripheral IgG+ memory B cells into antibody-secreting cells and analysed Fc glycosylation of secreted IgG. Furthermore, we sequenced the variable region of their heavy chain, which allowed the grouping of the clones into clonotypes. We found highly diverse glycosylation patterns of culture-derived IgG, which, to some degree, mimicked the glycosylation of plasma IgG. Each B cell clone secreted IgG with a mixture of different Fc glycosylation patterns. The majority of clones produced fully fucosylated IgG. B cells producing afucosylated IgG were scattered across different clonotypes. In contrast, the remaining glycosylation traits were, in general, more uniform. These results indicate IgG-Fc fucosylation to be regulated at the single-clone level, whereas the regulation of other glycosylation traits most likely occurs at a clonotypic or systemic level. The discrepancies between plasma IgG and culture-derived IgG, could be caused by the origin of the B cells analysed, clonal dominance or factors from the culture system, which need to be addressed in future studies.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Humanos , Glicosilação , Fragmentos Fc das Imunoglobulinas/genética , Linfócitos B/metabolismo , Células Clonais/metabolismo
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928183

RESUMO

Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation. However, the exact effector mechanism of action still remains a mystery. Changes in the glycosylation pattern of the immunoglobulin G (IgG) Fc region are described for several diseases including meningococcal sepsis. In this study, we investigated the possible contribution of neutrophils and neutrophil implication, potentially related to degranulation or neutrophil extracellular trap (NET) formation in changing the IgG Fc N-glycosylation pattern in a murine sepsis model. We have measured the serum level of cytokines/chemokines and immunoglobulins, the serum activity of neutrophil elastase (NE), and analyzed the IgG Fc glycosylation pattern by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (LC-ESI-MS) and Lectin enzyme-linked immunosorbent assay (ELISA). We observed an increased activity of NE- and neutrophil-associated cytokines such as keratinocyte chemoattractant (KC) with the development of sepsis. Regarding the IgG Fc N-glycosylation, we observed an increase in fucosylation and α1,3-galactosylation and a decrease for sialyation. Interestingly, these changes were not uniform for all IgG subclasses. After depletion of neutrophils, we saw a change in the exposure of fucose and α2,6-linked sialic acid during the time course of our experimental sepsis model. In conclusion, neutrophils can influence changes in the IgG glycosylation pattern in experimental sepsis.


Assuntos
Modelos Animais de Doenças , Imunoglobulina G , Neutrófilos , Sepse , Animais , Sepse/metabolismo , Sepse/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Glicosilação , Imunoglobulina G/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Camundongos , Citocinas/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos Endogâmicos C57BL , Elastase de Leucócito/metabolismo , Masculino , Armadilhas Extracelulares/metabolismo , Glicoproteínas
5.
J Proteome Res ; 22(10): 3213-3224, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37641533

RESUMO

Inflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), are chronic and relapsing inflammations of the digestive tract with increasing prevalence, yet they have unknown origins or cure. CD and UC have similar symptoms but respond differently to surgery and medication. Current diagnostic tools often involve invasive procedures, while laboratory markers for patient stratification are lacking. Large glycomic studies of immunoglobulin G and total plasma glycosylation have shown biomarker potential in IBD and could help determine disease mechanisms and therapeutic treatment choice. Hitherto, the glycosylation signatures of plasma immunoglobulin A, an important immunoglobulin secreted into the intestinal mucin, have remained undetermined in the context of IBD. Our study investigated the associations of immunoglobulin A1 and A2 glycosylation with IBD in 442 IBD cases (188 CD and 254 UC) and 120 healthy controls by reversed-phase liquid chromatography electrospray-ionization mass spectrometry of tryptic glycopeptides. Differences of IgA O- and N-glycosylation (including galactosylation, bisection, sialylation, and antennarity) between patient groups were associated with the diseases, and these findings led to the construction of a statistical model to predict the disease group of the patients without the need of invasive procedures. This study expands the current knowledge about CD and UC and could help in the development of noninvasive biomarkers and better patient care.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doença de Crohn/diagnóstico , Doença de Crohn/epidemiologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/epidemiologia , Glicosilação , Imunoglobulina A , Biomarcadores
6.
Glycobiology ; 33(9): 732-744, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498177

RESUMO

Glycans play a pivotal role in biology. However, because of the low-affinity of glycan-protein interactions, many interaction pairs remain unknown. Two important glycoproteins involved in B-cell biology are the B-cell receptor and its secreted counterpart, antibodies. It has been indicated that glycans expressed by these B-cell-specific molecules can modulate immune activation via glycan-binding proteins. In several autoimmune diseases, an increased prevalence of variable domain glycosylation of IgG autoantibodies has been observed. Especially, the hallmarking autoantibodies in rheumatoid arthritis, anti-citrullinated protein antibodies, carry a substantial amount of variable domain glycans. The variable domain glycans expressed by these autoantibodies are N-linked, complex-type, and α2-6 sialylated, and B-cell receptors carrying variable domain glycans have been hypothesized to promote selection of autoreactive B cells via interactions with glycan-binding proteins. Here, we use the anti-citrullinated protein antibody response as a prototype to study potential in solution and in situ B-cell receptor-variable domain glycan interactors. We employed SiaDAz, a UV-activatable sialic acid analog carrying a diazirine moiety that can form covalent bonds with proximal glycan-binding proteins. We show, using oligosaccharide engineering, that SiaDAz can be readily incorporated into variable domain glycans of both antibodies and B-cell receptors. Our data show that antibody variable domain glycans are able to interact with inhibitory receptor, CD22. Interestingly, although we did not detect this interaction on the cell surface, we captured CD79 ß glycan-B-cell receptor interactions. These results show the utility of combining photoaffinity labeling and oligosaccharide engineering for identifying antibody and B-cell receptor interactions and indicate that variable domain glycans appear not to be lectin cis ligands in our tested conditions.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Autoanticorpos , Polissacarídeos/química , Oligossacarídeos/metabolismo
7.
Platelets ; 34(1): 2129604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185007

RESUMO

Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.


Assuntos
Isoanticorpos , Transfusão de Plaquetas , Humanos , Plaquetas/metabolismo , Fagocitose , Macrófagos , Imunoglobulina G , Proteínas do Sistema Complemento/metabolismo , Antígenos HLA
8.
Haematologica ; 107(10): 2432-2444, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35354253

RESUMO

Approximately 20% of patients receiving multiple platelet transfusions develop platelet alloantibodies, which can be directed against human leukocyte antigens (HLA) and, to a lesser extent, against human platelet antigens (HPA). These antibodies can lead to the rapid clearance of donor platelets, presumably through IgG-Fc receptor (FcγR)-mediated phagocytosis or via complement activation, resulting in platelet refractoriness. Strikingly, not all patients with anti-HLA or -HPA antibodies develop platelet refractoriness upon unmatched platelet transfusions. Previously, we found that IgG Fc glycosylation of anti-HLA antibodies was highly variable between patients with platelet refractoriness, especially with respect to galactosylation and sialylation of the Fc-bound sugar moiety. Here, we produced recombinant glycoengineered anti-HLA and anti- HPA-1a monoclonal antibodies with varying Fc galactosylation and sialylation levels and studied their ability to activate the classical complement pathway. We observed that anti-HLA monoclonal antibodies with different specificities, binding simultaneously to the same HLA-molecules, or anti-HLA in combination with anti-HPA-1a monoclonal antibodies interacted synergistically with C1q, the first component of the classical pathway. Elevated Fc galactosylation and, to a lesser extent, sialylation significantly increased the complement-activating properties of anti-HLA and anti-HPA-1a monoclonal antibodies. We propose that both the breadth of the polyclonal immune response, with recognition of different HLA epitopes and in some cases HPA antigens, and the type of Fc glycosylation can provide an optimal stoichiometry for C1q binding and subsequent complement activation. These factors can shift the effect of a platelet alloimmune response to a clinically relevant response, leading to complement-mediated clearance of donor platelets, as observed in platelet refractoriness.


Assuntos
Antígenos de Plaquetas Humanas , Trombocitopenia , Anticorpos Monoclonais/farmacologia , Antígenos de Plaquetas Humanas/metabolismo , Plaquetas/metabolismo , Complemento C1q , Via Clássica do Complemento , Proteínas do Sistema Complemento/metabolismo , Epitopos , Antígenos HLA , Humanos , Imunoglobulina G/metabolismo , Isoanticorpos , Receptores de IgG/metabolismo , Açúcares/metabolismo , Trombocitopenia/metabolismo
9.
Anal Chem ; 92(6): 4518-4526, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32091889

RESUMO

Immunoglobulin (Ig) glycosylation is recognized for its influence on Ig turnover and effector functions. However, the large-scale profiling of Ig glycosylation in a biomedical setting is challenged by the existence of different Ig isotypes and subclasses, their varying serum concentrations, and the presence of multiple glycosylation sites per Ig. Here, a high-throughput nanoliquid chromatography (LC)- mass spectrometry (MS)-based method for simultaneous analysis of IgG and IgA glycopeptides was developed and applied on a serum sample set from 185 healthy donors. Sample preparation from minute amounts of serum was performed in 96-well plate format. Prior to trypsin digestion, IgG and IgA were enriched simultaneously, followed by a one-step denaturation, reduction, and alkylation. The obtained nanoLC-MS data were subjected to semiautomated, targeted feature integration and quality control. The combined and simplified protocol displayed high overall method repeatability, as assessed using pooled plasma and serum standards. Taking all samples together, 143 individual N- and O-glycopeptides were reliably quantified. These glycopeptides were attributable to 11 different peptide backbones, derived from IgG1, IgG2/3, IgG4, IgA1, IgA2, and the joining chain from dimeric IgA. Using this method, novel associations were found between IgA N- and O-glycosylation and age. Furthermore, previously reported associations of IgG Fc glycosylation with age in healthy individuals were confirmed. In conclusion, the new method paves the way for high-throughput multiprotein plasma glycoproteomics.


Assuntos
Glicopeptídeos/sangue , Ensaios de Triagem em Larga Escala , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Feminino , Voluntários Saudáveis , Humanos , Masculino
10.
Mol Cell Proteomics ; 17(6): 1225-1238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29233911

RESUMO

Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N- and O-glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O-glycosylated N-terminal region. Five novel and five known O-glycosylation sites were identified, carrying mainly core1-type O-glycans. In addition, we detected a heavily O-glycosylated portion spanning from Thr82-Ser121 with up to 16 O-glycans attached. Likewise, all known six N-glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N-glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
11.
J Immunol ; 199(1): 204-211, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566370

RESUMO

Abs of the IgG isotype are glycosylated in their Fc domain at a conserved asparagine at position 297. Removal of the core fucose of this glycan greatly increases the affinity for FcγRIII, resulting in enhanced FcγRIII-mediated effector functions. Normal plasma IgG contains ∼94% fucosylated Abs, but alloantibodies against, for example, Rhesus D (RhD) and platelet Ags frequently have reduced fucosylation that enhances their pathogenicity. The increased FcγRIII-mediated effector functions have been put to use in various afucosylated therapeutic Abs in anticancer treatment. To test the functional consequences of Ab fucosylation, we produced V-gene-matched recombinant anti-RhD IgG Abs of the four different subclasses (IgG1-4) with and without core fucose (i.e., 20% fucose remaining). Binding to all human FcγR types and their functional isoforms was assessed with surface plasmon resonance. All hypofucosylated anti-RhD IgGs of all IgG subclasses indeed showed enhanced binding affinity for isolated FcγRIII isoforms, without affecting binding affinity to other FcγRs. In contrast, when testing hypofucosylated anti-RhD Abs with FcγRIIIa-expressing NK cells, a 12- and 7-fold increased erythrocyte lysis was observed with the IgG1 and IgG3, respectively, but no increase with IgG2 and IgG4 anti-RhD Abs. Notably, none of the hypofucosylated IgGs enhanced effector function of macrophages, which, in contrast to NK cells, express a complex set of FcγRs, including FcγRIIIa. Our data suggest that the beneficial effects of afucosylated biologicals for clinical use can be particularly anticipated when there is a substantial involvement of FcγRIIIa-expressing cells, such as NK cells.


Assuntos
Fucose/química , Imunoglobulina G/química , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Fucose/imunologia , Fucose/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Ligação Proteica , Receptores de IgG/química , Receptores de IgG/genética , Sistema do Grupo Sanguíneo Rh-Hr/imunologia , Ressonância de Plasmônio de Superfície
12.
J Gastroenterol Hepatol ; 34(10): 1878-1886, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30345709

RESUMO

BACKGROUND AND AIM: Immunoglobulin subclass G4-related disease (IgG4-RD) is characterized by an abundance of IgG4 antibodies in the serum and tissue. Glycosylation status of antibodies can impact on immune effector functions and disease pathophysiology. We sought to establish glycosylation patterns in a prospective cohort of patients with IgG4-RD and the relationship with disease activity and response to treatment. METHODS: We assessed IgG Fc-tail and Fab-arm glycosylation status in patients with IgG4-RD (n = 22), disease controls with primary sclerosing cholangitis (PSC) (n = 22), and healthy controls (n = 22). Serum IgG and subclasses were quantified using ELISA. Fc and Fab glycosylation were analyzed by mass spectrometry and lectin affinity chromatography, respectively. Disease activity, organ damage, and response to treatment were assessed using the IgG4 Responder Index. RESULTS: Immunoglobulin G Fab sialylation was increased in IgG4-RD compared with PSC and healthy control (P = 0.01), with a preferential increase in IgG4-specific Fab sialylation, which was independent of IgG4 Fab-arm exchange. There was a reduction in IgG1-specific Fc bisection and hybrid structures in IgG4-RD (P < 0.01), which recovered upon steroid treatment and correlated with disease activity. Overall, IgG Fc galactosylation was reduced in both IgG4-RD and PSC (P < 0.01), with a preferential reduction in IgG1-specific sialylation and enhancement of IgG4-specific bisection in PSC. IgG4 fucosylation and IgG1/2/3 hybrid structures negatively correlated with complement C3 and C4 levels in IgG4-RD (P < 0.01), but not PSC. CONCLUSION: We report the first study showing unique antibody glycosylation status in a prospective cohort of IgG4-RD and PSC patients, which may determine modulation of the immune system and contribute to disease pathophysiology.


Assuntos
Colangite Esclerosante/sangue , Fragmentos Fab das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/sangue , Doença Relacionada a Imunoglobulina G4/sangue , Imunoglobulina G/metabolismo , Processamento de Proteína Pós-Traducional , Corticosteroides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Colangite Esclerosante/diagnóstico , Colangite Esclerosante/imunologia , Feminino , Glicosilação , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Doença Relacionada a Imunoglobulina G4/diagnóstico , Doença Relacionada a Imunoglobulina G4/tratamento farmacológico , Doença Relacionada a Imunoglobulina G4/imunologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
13.
Ann Rheum Dis ; 77(10): 1471-1479, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29945923

RESUMO

OBJECTIVES: Therapeutic antibodies can provoke an antidrug antibody (ADA) response, which can form soluble immune complexes with the drug in potentially high amounts. Nevertheless, ADA-associated adverse events are usually rare, although with notable exceptions including infliximab. The immune activating effects and the eventual fate of these 'anti-idiotype' complexes are poorly studied, hampering assessment of ADA-associated risk of adverse events. We investigated the in vitro formation and biological activities of ADA-drug anti-idiotype immune complexes using patient-derived monoclonal anti-infliximab antibodies. METHODS: Size distribution and conformation of ADA-drug complexes were characterised by size-exclusion chromatography and electron microscopy. Internalisation of and immune activation by complexes of defined size was visualised with flow imaging, whole blood cell assay and C4b/c ELISA. RESULTS: Size and conformation of immune complexes depended on the concentrations and ratio of drug and ADA; large complexes (>6 IgGs) formed only with high ADA titres. Macrophages efficiently internalised tetrameric and bigger complexes in vitro, but not dimers. Corroborating these results, ex vivo analysis of patient sera demonstrated only dimeric complexes in circulation.No activation of immune cells by anti-idiotype complexes was observed, and only very large complexes activated complement. Unlike Fc-linked hexamers, anti-idiotype hexamers did not activate complement, demonstrating that besides size, conformation governs immune complex potential for triggering effector functions. CONCLUSIONS: Anti-idiotype ADA-drug complexes generally have restricted immune activation capacity. Large, irregularly shaped complexes only form at high concentrations of both drug and ADA, as may be achieved during intravenous infusion of infliximab, explaining the rarity of serious ADA-associated adverse events.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos/efeitos dos fármacos , Complexo Antígeno-Anticorpo/imunologia , Antirreumáticos/imunologia , Infliximab/imunologia , Cromatografia em Gel , Ensaio de Imunoadsorção Enzimática , Humanos , Soro/imunologia
14.
Glycoconj J ; 35(2): 217-231, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29502191

RESUMO

N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan "bisection" and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266-4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the "bisecting" GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of "bisecting" GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of "bisected" oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.


Assuntos
Melanoma/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Humanos , N-Acetilglucosaminiltransferases/genética
15.
Mol Cell Proteomics ; 15(1): 124-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537799

RESUMO

Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between α2,3- and α2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation.


Assuntos
Neoplasias Colorretais/metabolismo , Glicômica/métodos , Proteínas de Homeodomínio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Polissacarídeos/metabolismo , Células CACO-2 , Diferenciação Celular/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fucose/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Células HCT116 , Células HT29 , Proteínas de Homeodomínio/genética , Humanos , Proteínas dos Microfilamentos/genética , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
16.
Br J Haematol ; 176(4): 651-660, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891581

RESUMO

Haemolytic disease of the fetus and newborn (HDFN) is a severe disease in which fetal red blood cells (RBC) are destroyed by maternal anti-RBC IgG alloantibodies. HDFN is most often caused by anti-D but may also occur due to anti-K, -c- or -E. We recently found N-linked glycosylation of anti-D to be skewed towards low fucosylation, thereby increasing the affinity to IgG-Fc receptor IIIa and IIIb, which correlated with HDFN disease severity. Here, we analysed 230 pregnant women with anti-c, -E or -K alloantibodies from a prospective screening cohort and investigated the type of Fc-tail glycosylation of these antibodies in relation to the trigger of immunisation and pregnancy outcome. Anti-c, -E and -K show - independent of the event that had led to immunisation - a different kind of Fc-glycosylation compared to that of the total IgG fraction, but with less pronounced differences compared to anti-D. High Fc-galactosylation and sialylation of anti-c correlated with HDFN disease severity, while low anti-K Fc-fucosylation correlated with severe fetal anaemia. IgG-Fc glycosylation of anti-RBC antibodies is shaped depending on the antigen. These features influence their clinical potency and may therefore be used to predict severity and identify those needing treatment.


Assuntos
Eritroblastose Fetal/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Isoanticorpos/sangue , Adulto , Antígenos de Grupos Sanguíneos/imunologia , Eritroblastose Fetal/diagnóstico , Eritrócitos/imunologia , Feminino , Glicosilação , Humanos , Recém-Nascido , Masculino , Gravidez , Índice de Gravidade de Doença
17.
Mol Cell Proteomics ; 14(5): 1373-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759508

RESUMO

Immunoglobulin G (IgG) is one of the most abundant proteins present in human serum and a fundamental component of the immune system. IgG3 represents ∼8% of the total amount of IgG in human serum and stands out from the other IgG subclasses because of its elongated hinge region and enhanced effector functions. This study reports partial O-glycosylation of the IgG3 hinge region, observed with nanoLC-ESI-IT-MS(/MS) analysis after proteolytic digestion. The repeat regions within the IgG3 hinge were found to be in part O-glycosylated at the threonine in the triple repeat motif. Non-, mono- and disialylated core 1-type O-glycans were detected in various IgG3 samples, both poly- and monoclonal. NanoLC-ESI-IT-MS/MS with electron transfer dissociation fragmentation and CE-MS/MS with CID fragmentation were used to determine the site of IgG3 O-glycosylation. The O-glycosylation site was further confirmed by the recombinant production of mutant IgG3 in which potential O-glycosylation sites had been knocked out. For IgG3 samples from six donors we found similar O-glycan structures and site occupancies, whereas for the same samples the conserved N-glycosylation of the Fc CH2 domain showed considerable interindividual variation. The occupancy of each of the three O-glycosylation sites was found to be ∼10% in six serum-derived IgG3 samples and ∼13% in two monoclonal IgG3 allotypes.


Assuntos
Imunoglobulina G/análise , Peptídeos/análise , Treonina/química , Adulto , Sequência de Aminoácidos , Sequência de Carboidratos , Feminino , Expressão Gênica , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Proteólise , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Treonina/metabolismo , Tripsina/química
18.
Br J Haematol ; 174(2): 310-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27017954

RESUMO

Fetal or neonatal alloimmune thrombocytopenia (FNAIT) is a potentially life-threatening disease where fetal platelets are destroyed by maternal anti-platelet IgG alloantibodies. The clinical outcome varies from asymptomatic, to petechiae or intracranial haemorrhage, but no marker has shown reliable correlation with severity, making screening for FNAIT impractical and highly inefficient. We recently found IgG Fc-glycosylation towards platelet and red blood cell antigens to be skewed towards decreased fucosylation, increased galactosylation and sialylation. The lowered core-fucosylation increases the affinity of the pathogenic antibodies to FcγRIIIa and FcγRIIIb, and hence platelet destruction. Here we analysed the N-linked glycans of human platelet antigen (HPA)-1a specific IgG1 with mass spectrometry in large series of FNAIT cases (n = 166) including longitudinal samples (n = 26). Besides a significant decrease in Fc-fucosylation after the first pregnancy (P = 0·0124), Fc-glycosylation levels remained stable during and after pregnancy and in subsequent pregnancies. Multiple logistic regression analysis identified anti-HPA-1a -fucosylation (P = 0·006) combined with galactosylation (P = 0·021) and antibody level (P = 0·038) correlated with bleeding severity, making these parameters a feasible marker in screening for severe cases of FNAIT.


Assuntos
Plaquetas/imunologia , Glicosilação , Imunoglobulina G/análise , Isoanticorpos/química , Trombocitopenia Neonatal Aloimune/imunologia , Anticorpos Anti-Idiotípicos/química , Antígenos de Plaquetas Humanas/imunologia , Feminino , Fucose/química , Galactose/química , Hemorragia/imunologia , Humanos , Integrina beta3 , Isoanticorpos/sangue , Espectrometria de Massas , Ácido N-Acetilneuramínico/química , Valor Preditivo dos Testes , Gravidez , Índice de Gravidade de Doença
19.
Blood ; 123(4): 471-80, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24243971

RESUMO

Immunoglobulin G (IgG) formed during pregnancy against human platelet antigens (HPAs) of the fetus mediates fetal or neonatal alloimmune thrombocytopenia (FNAIT). Because antibody titer or isotype does not strictly correlate with disease severity, we investigated by mass spectrometry variations in the glycosylation at Asn297 in the IgG Fc because the composition of this glycan can be highly variable, affecting binding to phagocyte IgG-Fc receptors (FcγR). We found markedly decreased levels of core fucosylation of anti-HPA-1a-specific IgG1 from FNAIT patients (n = 48), but not in total serum IgG1. Antibodies with a low amount of fucose displayed higher binding affinity to FcγRIIIa and FcγRIIIb, but not to FcγRIIa, compared with antibodies with a high amount of Fc fucose. Consequently, these antibodies with a low amount of Fc fucose showed enhanced phagocytosis of platelets using FcγRIIIb(+) polymorphonuclear cells or FcγRIIIa(+) monocytes as effector cells, but not with FcγRIIIa(-) monocytes. In addition, the degree of anti-HPA-1a fucosylation correlated positively with the neonatal platelet counts in FNAIT, and negatively to the clinical disease severity. In contrast to the FNAIT patients, no changes in core fucosylation were observed for anti-HLA antibodies in refractory thrombocytopenia (post platelet transfusion), indicating that the level of fucosylation may be antigen dependent and/or related to the immune milieu defined by pregnancy.


Assuntos
Plaquetas/imunologia , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Isoanticorpos/química , Trombocitopenia Neonatal Aloimune/sangue , Trombocitopenia Neonatal Aloimune/imunologia , Anticorpos Monoclonais/química , Asparagina/química , Estudos de Coortes , Feminino , Fucose/química , Glucose/química , Glicosilação , Antígenos HLA/química , Humanos , Fragmentos Fc das Imunoglobulinas/sangue , Imunoglobulina G/sangue , Isoanticorpos/sangue , Espectrometria de Massas , Monócitos/citologia , Contagem de Plaquetas , Período Pós-Parto , Gravidez , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície
20.
J Proteome Res ; 14(4): 1657-65, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25761865

RESUMO

Granulomatosis with polyangiitis (GPA) is associated with circulating immunoglobulin (Ig) G anti-proteinase 3 specific (anti-PR3) anti-neutrophil cytoplasm antibodies (ANCA), which activate cytokine primed neutrophils via Fcgamma receptors. ANCA are class switched IgG antibodies implying T cell help in their production. Glycosylation of IgG Fc, under the control of T cell cytokines, determines the interaction between IgG and its receptors. Previous studies have reported aberrant glycosylation of Ig Fc in GPA patients. We investigated whether aberrant Fc glycosylation was present on anti-PR3 ANCA as well as whole IgG subclass preparations compared to healthy controls and whether this correlated with Birmingham vasculitis activity scores (BVAS), serum cytokines, and time to remission. Here, IgG Fc glycosylation of GPA patients and controls and anti-PR3 ANCA Fc glycosylation were determined by mass spectrometry of glycopeptides. IgG1 and IgG2 subclasses from GPA patients showed reduced galactosylation, sialylation, and bisection compared to healthy controls. Anti-PR3 IgG1 ANCA Fc galactosylation, sialylation, and bisection were reduced compared to total IgG1 in GPA. Galactosylation of anti-PR3 ANCA Fc correlated with inflammatory cytokines and time to remission but not BVAS. Bisection of anti-PR3 ANCA Fc correlated with BVAS. Total IgG1 and anti-PR3 IgG1 Fc galactosylation were weakly correlated, while bisection of IgG1 and anti-PR3 showed no correlation. Our data indicate that aberrant ANCA galactosylation may be driven in an antigen-specific manner.


Assuntos
Autoanticorpos/metabolismo , Granulomatose com Poliangiite/metabolismo , Imunoglobulina G/metabolismo , Mieloblastina/imunologia , Adulto , Autoanticorpos/imunologia , Citocinas/sangue , Glicosilação , Granulomatose com Poliangiite/imunologia , Humanos , Imunoglobulina G/imunologia , Espectrometria de Massas , Pessoa de Meia-Idade , Vasculite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA