Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 146(7): 2766-2779, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730026

RESUMO

The parkinsonian gait disorder and freezing of gait are therapeutically demanding symptoms with considerable impact on quality of life. The aim of this study was to assess the role of subthalamic and nigral neurons in the parkinsonian gait control using intraoperative microelectrode recordings of basal ganglia neurons during a supine stepping task. Twelve male patients (56 ± 7 years) suffering from moderate idiopathic Parkinson's disease (disease duration 10 ± 3 years, Hoehn and Yahr stage 2), undergoing awake neurosurgery for deep brain stimulation, participated in the study. After 10 s resting, stepping at self-paced speed for 35 s was followed by short intervals of stepping in response to random 'start' and 'stop' cues. Single- and multi-unit activity was analysed offline in relation to different aspects of the stepping task (attentional 'start' and 'stop' cues, heel strikes, stepping irregularities) in terms of firing frequency, firing pattern and oscillatory activity. Subthalamic nucleus and substantia nigra neurons responded to different aspects of the stepping task. Of the subthalamic nucleus neurons, 24% exhibited movement-related activity modulation as an increase of the firing rate, suggesting a predominant role of the subthalamic nucleus in motor aspects of the task, while 8% of subthalamic nucleus neurons showed a modulation in response to the attentional cues. In contrast, responsive substantia nigra neurons showed activity changes exclusively associated with attentional aspects of the stepping task (15%). The firing pattern of subthalamic nucleus neurons revealed gait-related firing regularization and a drop of beta oscillations during the stepping performance. During freezing episodes instead, there was a rise of beta oscillatory activity. This study shows for the first time specific, task-related subthalamic nucleus and substantia nigra single-unit activity changes during gait-like movements in humans with differential roles in motor and attentional control of gait. The emergence of perturbed firing patterns in the subthalamic nucleus indicates a disrupted information transfer within the gait network, resulting in freezing of gait.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Masculino , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Qualidade de Vida , Substância Negra
2.
Neurosurg Rev ; 43(5): 1403-1408, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31502028

RESUMO

In medical refractory temporal lobe epilepsy (TLE), the epileptogenic zone can be difficult to identify and therefore difficult to treat, especially in the absence of clear MRI pathologies and specific results from presurgical evaluation. Invasive monitoring with stereo-electroencephalography (sEEG) is a tool for a better determination of the epileptogenic zone. Here, we investigate the impact of sEEG on decision-making in temporal lobe epilepsy surgery. We reviewed patients with TLE who underwent further investigation with sEEG in our epilepsy unit. We examined specifically how sEEG findings influenced our decision regarding indication for a surgical procedure and resection volume. From 2013 to 2017, we performed 152 temporal resections in epilepsy patients. Twenty-one of these patients were designated for further preoperative investigation with sEEG due to incongruent findings in presurgical evaluation. Six patients were implanted bitemporally. In five cases, the hypothesis for the epileptogenic zone and localization had to be changed due to sEEG findings and resulted in a different tailored resection than intended. In three cases, sEEG findings led to the cancelation of the originally intended temporal resection as the epileptogenic zone was not definable or bilateral. In another three cases, the prognosis for reduction of seizures postoperatively had to be reduced due to the sEEG findings. However, the resection was performed after interdisciplinary discussion and informed consent of the patient. The examination by sEEG led to a change of plan for further treatment in 13 patients (61.9%) suffering TLE in total. Invasive monitoring with sEEG electrodes had a strong impact on decision-making for further treatment in patients suffering from temporal lobe epilepsy with incongruent findings in presurgical examination designated for epilepsy surgery. This applies to resection volumes as well as to prediction of seizure outcome.


Assuntos
Tomada de Decisão Clínica/métodos , Eletroencefalografia/métodos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Procedimentos Neurocirúrgicos/métodos , Adolescente , Adulto , Eletrodos Implantados , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Prognóstico , Convulsões/prevenção & controle , Convulsões/cirurgia , Resultado do Tratamento , Adulto Jovem
3.
Front Hum Neurosci ; 16: 788200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418844

RESUMO

Background: The preferable position of Deep Brain Stimulation (DBS) electrodes is proposed to be located in the dorsolateral subthalamic nucleus (STN) to improve general motor performance. The optimal DBS electrode localization for the post-operative improvement of balance and gait is unknown. Methods: In this single-center, retrospective analyses, 66 Parkinson's disease (PD) patients (24 female, age 63 ± 7 years) were assessed pre- and post-operatively (8.45 ± 4.2 months after surgery) by using MDS-UPDRS, freezing of gait (FoG) score, Giladi's gait and falls questionnaire and Berg balance scale. The clinical outcome was related to the DBS electrode coordinates in x, y, z plane as revealed by image-based reconstruction (SureTune™). Binomial generalized linear mixed models with fixed-effect variables electrode asymmetry, parkinsonian subtype, medication, age class and clinical DBS induced changes were analyzed. Results: Subthalamic nucleus-deep brain stimulation improved all motor, balance and FoG scores in MED OFF condition, however there were heterogeneous results in MED ON condition. DBS electrode reconstructed coordinates impacted the responsiveness of axial symptoms. FoG and balance responders showed slightly more medially located STN electrode coordinates and less medio-lateral asymmetry of the electrode reconstructed coordinates across hemispheres compared to non-responders. Conclusion: Deep brain stimulation electrode reconstructed coordinates, particularly electrode asymmetry on the medio-lateral axis affected the post-operative responsiveness of balance and FoG symptoms in PD patients.

4.
Front Neurol ; 11: 776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849228

RESUMO

Changes in personality are one of the main concerns Parkinson's disease (PD) patients raise when facing the decision to undergo neurosurgery for deep brain stimulation (DBS) of the subthalamic nucleus (STN). While clinical instruments for monitoring functional changes following DBS surgery are well-established in the daily therapeutic routine, personality issues are far less systematically encompassed. Moreover, while sex disparities in the outcomes of STN-DBS therapy have been reported, little is known about the different effects that DBS treatment may have on mood and personality traits in female and male patients. To this aim, the effect of STN-DBS on personality traits was assessed in 46 PD patients (12 women and 34 men) by means of the Freiburg Personality Inventory. The Becks Depression Inventory (BDI-I) and the Parkinson's Disease Questionnaire were used to evaluate patients' level of depression and quality of life (QoL). Patients completed the questionnaires a few days before, within the first year, and 2 years after surgery. The 12 personality traits defined by the FPI-R questionnaire did not change significantly after STN-DBS surgery (p = 0.198). Women declared higher depression scores through all study stages (p = 0.009), but also showed a stronger QoL amelioration after surgery than male patients (p = 0.022). The BDI-I scores of female patients clearly correlated with their levodopa equivalent daily dose (LEDD; r = 0.621, p = 0.008). Remarkably, in both male and female patients, higher pre-operative LEDDs were related to worse post-operative QoL scores (p = 0.034). These results mitigate the concerns about systematic personality changes due to STN-DBS treatment in PD patients and encourage an early DBS approach, before severe levodopa-induced sequelae may irreparably compromise the patients' QoL. In the future, more focus should lie on sex-related effects, since female patients seem to profit more than male patients from STN-DBS, in terms of reduced depressive symptoms associated with a reduction of the LEDD and amelioration of QoL. These aspects may help to redress the sex imbalance in PD patients treated with DBS, given that women are still strongly under-represented.

6.
Front Syst Neurosci ; 8: 15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574981

RESUMO

The origin of asymmetric clinical manifestation of symptoms in patients suffering from cervical dystonia (CD) is hitherto poorly understood. Dysregulated neuronal activity in the basal ganglia has been suggested to have a role in the pathophysiology of CD. Here, we re-assessed the question to what extent relative changes occur in the direct vs. indirect basal ganglia pathway in CD, whether these circuit changes are lateralized, and how these alterations relate to CD symptoms. To this end, we recorded ongoing single cell and local field potential (LFP) activity from the external (GPe) and internal pallidal segment (GPi) of 13 CD patients undergoing microelectrode-guided stereotactic surgery for deep brain stimulation in the GPi. We compared pallidal recordings from CD patients operated under local anaesthesia (LA) with those obtained in CD patients operated under general anaesthesia (GA). In awake patients, mean GPe discharge rate (52 Hz) was lower than that of GPi (72 Hz). Mean GPi discharge ipsilateral to the side of head turning was higher than contralateral and correlated with torticollis symptom severity. Lateralized differences were absent at the level of the GPe and in recordings from patients operated under GA. Furthermore, in the GPi of CD patients there was a subpopulation of theta-oscillatory cells with unique bursting characteristics. Power and coherence of GPe- and GPi-LFPs were dominated by a theta peak and also exhibited band-specific interhemispheric differences. Strong cross-frequency coupling of low-gamma amplitude to theta phase was a feature of pallidal LFPs recorded under LA, but not GA. These results indicate that CD is associated with an asymmetric pallidal outflow. Based on the finding of symmetric neuronal discharges in the GPe, we propose that an imbalanced interhemispheric direct pathway gain may be involved in CD pathophysiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA