Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2211193119, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36520670

RESUMO

An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) µB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.

2.
Nat Mater ; 22(8): 999-1006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202488

RESUMO

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m-1 K-1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

3.
J Chem Phys ; 149(5): 054502, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089384

RESUMO

Alkyl-methyl-imidazolium ionic liquids CnmimX (n: alkyl-carbon number, X: anion) have short-range layer structures consisting of ionic and neutral (alkylchain) domains. To investigate the temperature dependences of the interlayer, interionic group, and inter-alkylchain correlations, we have measured the neutron diffraction (ND) of C16mimPF6, C9.5mimPF6, and C8mimPF6 in the temperature region from 4 K to 470 K. The quasielastic neutron scattering (QENS) of C16mimPF6 was also measured to study the dynamics of each correlation. C16mimPF6 shows a first-order transition between the liquid (L) and liquid crystalline (LC) phases at Tc = 394 K. C8mimPF6 exhibits a glass transition at Tg = 200 K. C9.5mimPF6, which is a 1:3 mixture between C8mimPF6 and C10mimPF6, has both transitions at Tc = 225 K and Tg = 203 K. In the ND experiments, all samples exhibit three peaks corresponding to the correlations mentioned above. The widths of the interlayer peak at ca. 0.2 Å-1 changed drastically at the L-LC transitions, while the interionic peaks at ca. 1 Å-1 exhibited a small jump at Tc. The peak position and area of the three peaks did not change much at the transition. The structural changes were minimal at Tg. The QENS experiments demonstrated that the relaxation time of the interlayer motion increased tenfold at Tc, while those of other motions were monotonous in the whole temperature region. The structural and dynamical changes mentioned above are characteristic of the L-LC transition in imidazolium-based ionic liquids.

4.
J Am Chem Soc ; 138(32): 10238-43, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27462875

RESUMO

Nanometer-sized materials attract much attention because their physical and chemical properties are substantially different from those of bulk materials owing to their size and surface effects. In this work, neutron powder diffraction experiments on the nanoparticles of palladium hydride, which is the most popular metal hydride, have been performed at 300, 150, and 44 K to investigate the positions of the hydrogen atoms in the face-centered cubic (fcc) lattice of palladium. We used high-quality PdD0.363 nanocrystals with a diameter of 8.0 ± 0.9 nm. The Rietveld analysis revealed that 30% of D atoms are located at the tetrahedral (T) sites and 70% at the octahedral (O) sites. In contrast, only the O sites are occupied in bulk palladium hydride and in most fcc metal hydrides. The temperature dependence of the T-site occupancy suggested that the T-sites are occupied only in a limited part, probably in the subsurface region, of the nanoparticles. This is the first study to determine the hydrogen sites in metal nanoparticles.

5.
Phys Chem Chem Phys ; 18(34): 23474-81, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27225393

RESUMO

The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methylimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy X-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4-water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4(-) for complexing the imidazolium rings was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4(-) anions to the imidazolium ring is not significantly changed by the addition of water. A complementary packing of water and imidazolium around BF4(-) was found. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.

6.
J Chem Phys ; 143(23): 234502, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26696061

RESUMO

Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (Ea) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionic diffusion processes, Ea increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.

7.
Phys Chem Chem Phys ; 16(32): 17295-304, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25019223

RESUMO

A two-dimensional porous coordination polymer (NH4)2{HOOC(CH2)4COOH}[Zn2(C2O4)3] (abbreviated as (NH4)2(adp)[Zn2(ox)3] (adp = adipic acid, ox = oxalate)), which accommodates water molecules between the [Zn2(ox)3] layers, is highly remarked as a new type of crystalline proton conductor. In order to investigate its phase behavior and the proton conducting mechanism, we have performed adiabatic calorimetry, neutron diffraction, and quasi-elastic neutron scattering experiments on a fully hydrated sample (NH4)2(adp)[Zn2(ox)3]·3H2O with the highest proton conductivity (8 × 10(-3) S cm(-1), 25 °C, 98% RH). Its isostructural derivative K2(adp)[Zn2(ox)3]·3H2O was also measured to investigate the role of ammonium ions. (NH4)2(adp)[Zn2(ox)3]·3H2O and K2(adp)[Zn2(ox)3]·3H2O exhibit higher order transitions at 86 K and 138 K, respectively. From the magnitude of the transition entropy, the former is of an order-disorder type while the latter is of a displacive type. (NH4)2(adp)[Zn2(ox)3]·3H2O has four Debye-type relaxations and K2(adp)[Zn2(ox)3]·3H2O has two similar relaxations above each transition temperature. The two relaxations of (NH4)2(adp)[Zn2(ox)3]·3H2O with very small activation energies (ΔEa < 5 kJ mol(-1)) are due to the rotational motions of ammonium ions and play important roles in the proton conduction mechanism. It was also found that the protons in (NH4)2(adp)[Zn2(ox)3]·3H2O are carried through a Grotthuss mechanism. We present a discussion on the proton conducting mechanism based on the present structural and dynamical information.

8.
J Phys Condens Matter ; 36(37)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848726

RESUMO

This study re-evaluates the theoretical approach to analyzing inelastic neutron spectra of hydrogen-containing metals and intermetallic compounds. Previously, these analyses utilized hydrogen quantum nuclear states, modeled as solutions to the Schrödinger equation. The potential surfaces in these models were approximated from the total energies derived from first-principles electronic structure calculations. The current study improves upon this method by employing more efficient and accurate treatments for sampling the potential surface. It utilizes symmetrically irreducible sampling points arranged on densely populated mesh grids for the first-principles calculations. A comparative analysis of the theoretical predictions with experimental spectra for hydrides of Ti2Sb and Ti3Sb, as well as a LaNi5hydrogen primary solid solution, demonstrates that this approach is promising for elucidating the unknown local environments of hydrogen atoms in systems where the approximate potential well describes the hydrogen quantum states.

9.
J Phys Chem B ; 128(6): 1544-1549, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306707

RESUMO

Improving the proton transport in polymer electrolytes impacts the performance of next-generation solid-state batteries. However, little is known about proton conductivity in nonaqueous systems due to the lack of an appropriate level of fundamental understanding. Here, we studied the proton transport in small molecules with dynamic hydrogen bonding, 1,2,3-triazole, as a model system of proton hopping in a nonaqueous environment using incoherent quasi-elastic neutron scattering. By using the jump-diffusion model, we identified the elementary jump-diffusion motion of protons at a much shorter length scale than those by nuclear magnetic resonance and impedance spectroscopy for the estimated long-range diffusion. In addition, a spatially restricted diffusive motion was observed, indicating that proton motion in 1,2,3-triazole is complex with various local correlated dynamics. These correlated dynamics will be important in elucidating the nature of the proton dynamics in nonaqueous systems.

10.
J Phys Chem Lett ; 15(1): 329-338, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170631

RESUMO

The atomic dynamic behaviors of formamidinium lead iodide [HC(NH2)2PbI3] are critical for understanding and improving photovoltaic performances. However, they remain unclear. Here, we investigate the structural phase transitions and the reorientation dynamics of the formamidinium cation [HC(NH2)2+, FA+] of FAPbI3 using neutron scattering techniques. Two structural phase transitions occur with decreasing temperature, from cubic to tetragonal phase at 285 K and then to another tetragonal at 140 K, accompanied by gradually frozen reorientation of FA cations. The nearly isotropic reorientation in the cubic phase is suppressed to reorientation motions involving a two-fold (C2) rotation along the N···N axis and a four-fold (C4) rotation along the C-H axis in the tetragonal phase, and eventually to local disordered motion as a partial C4 along the C-H axis in another tetragonal phase, thereby indicating an intimate interplay between lattice and orientation degrees of freedom in the hybrid perovskite materials. The present complete atomic structure and dynamics provide a solid standing point to understand and then improve photovoltaic properties of organic-inorganic hybrid perovskites in the future.

11.
J Appl Crystallogr ; 55(Pt 3): 533-543, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35719304

RESUMO

A data-driven bin-width optimization for the histograms of measured data sets based on inhomogeneous Poisson processes was developed in a neurophysiology study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503-1527], and a subsequent study [Muto, Sakamoto, Matsuura, Arima & Okada (2019). J. Phys. Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering (INS) data. In the present study, the results of the method on experimental INS time-of-flight data collected under different measurement conditions from a copper single crystal are validated. The extrapolation of the statistics on a given data set to other data sets with different total counts precisely infers the optimal bin widths on the latter. The histograms with the optimized bin widths statistically verify two fine-spectral-feature examples in the energy and momentum transfer cross sections: (i) the existence of phonon band gaps; and (ii) the number of plural phonon branches located close to each other. This indicates that the applied method helps in the efficient and rigorous observation of spectral structures important in physics and materials science like novel forms of magnetic excitation and phonon states correlated to thermal conductivities.

12.
Nat Commun ; 13(1): 2092, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440658

RESUMO

The relaxation behavior of glass formers exhibits spatial heterogeneity and dramatically changes upon cooling towards the glass transition. However, the underlying mechanisms of the dynamics at different microscopic length scales are not fully understood. Employing the recently developed wide-angle neutron spin-echo spectroscopy technique, we measured the Q-dependent coherent intermediate scattering function of a prototypical ionic glass former Ca0.4K0.6(NO3)1.4, in the highly viscous liquid state. In contrast to the structure modulated dynamics for Q < 2.4 Å-1, i.e., at and below the structure factor main peak, for Q > 2.4 Å-1, beyond the first minimum above the structure factor main peak, the stretching exponent exhibits no temperature dependence and concomitantly the relaxation time shows smaller deviations from Arrhenius behavior. This finding indicates a change in the dominant relaxation mechanisms around a characteristic length of 2π/(2.4 Å-1) ≈ 2.6 Å, below which the relaxation process exhibits a temperature independent distribution and more Arrhenius-like behavior.

13.
J Chem Phys ; 135(5): 054508, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21823713

RESUMO

We have performed the heat capacity, neutron diffraction, and neutron quasielastic scattering measurements of an ionic liquid 1-octyl-3-methylimidazolium chloride (C8mimCl). The heat capacity data revealed that C8mimCl exhibits a glass transition with a large heat capacity jump at T(g) = 214 K, which is lower than T(g) of C4mimCl with a shorter alkyl-chain. In the neutron diffraction measurement for a deuterated analogue, d-C8mimCl, the peaks associated with the inter-domain, inter-ionic, and inter-alkyl-chain correlations appeared at (3, 11, and 14) nm(-1), respectively. The temperature dependence of these peaks indicates that the packing of the alkyl-chains becomes more compact and the domains become more vivid and larger as decreasing temperature. The quasielastic neutron scattering measurements using neutron spin echo and time-of-flight type instruments demonstrated that C8mimCl has faster relaxations probably owing to the alkyl-group and a slower relaxation owing to the ions. The latter relaxation, which is related to the glass transition, is of non-exponential as in the α relaxation of glass-forming molecular liquids. The relaxation of domains could not be observed in the present experiment but should have relaxation times longer than 100 ns. This is the first report to clarify temperature dependence of the hierarchical structure and relaxations simultaneously for a typical ionic liquid.

14.
J Phys Chem Lett ; 12(8): 2172-2176, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629864

RESUMO

Hydration water plays a crucial role for activating the protein dynamics required for functional expression. Yet, the details are not understood about how hydration water couples with protein dynamics. A temperature hysteresis of the ice formation of hydration water is a key phenomenon to understand which type of hydration water, unfreezable or freezable hydration water, is crucial for the activation of protein dynamics. Using neutron scattering, we observed a temperature-hysteresis phenomenon in the diffraction peaks of the ice of freezable hydration water, whereas protein dynamics did not show any temperature hysteresis. These results show that the protein dynamics is not coupled with freezable hydration water dynamics, and unfreezable hydration water is essential for the activation of protein dynamics. Decoupling of the dynamics between unfreezable and freezable hydration water could be the cause of the distinct contributions of hydration water to protein dynamics.


Assuntos
Óxido de Deutério/química , Muramidase/metabolismo , Animais , Galinhas , Congelamento , Difração de Nêutrons , Temperatura
15.
J Phys Chem Lett ; 12(1): 392-398, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356292

RESUMO

Using neutron spin-echo spectroscopy, we studied the microscopic structural relaxation of a prototypical network ionic liquid ZnCl2 at the structure factor primary peak and prepeak. The results show that the relaxation at the primary peak is faster than the prepeak and that the activation energy is ∼33% higher. A stretched exponential relaxation is observed even at temperatures well-above the melting point Tm. Surprisingly, the stretching exponent shows a rapid increase upon cooling, especially at the primary peak, where it changes from a stretched exponential to a simple exponential on approaching the Tm. These results suggest that the appearance of glassy dynamics typical of the supercooled state even in the equilibrium liquid state of ZnCl2 as well as the difference of activation energy at the two investigated length scales are related to the formation of a network structure on cooling.

16.
Struct Dyn ; 8(5): 054501, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34660845

RESUMO

Dynamics of water and other small molecules confined in nanoporous materials is one of the current topics in condensed matter physics. One popular host material is a benzenedicarboxylate-bridging metal (III) complex abbreviated to MIL-53, whose chemical formula is M(OH)[C6H2(CO2)2R2] where M = Cr, Al, Fe and R = H, OH, NH2, COOH. These materials absorb not only water but also ammonia molecules. We have measured the quasi-elastic neutron scattering of MIL-53(Fe)-(COOH)2·2H2O and MIL-53(Fe)-(COOH)2·3NH3 which have full guest occupancy and exhibit the highest proton conductivity in the MIL-53 family. In a wide relaxation time region (τ = 10-12-10-8 s), two relaxations with Arrhenius temperature dependence were found in each sample. It is of interest that their activation energies are smaller than those of bulk H2O and NH3 liquids. The momentum transfer dependence of the relaxation time and the temperature dependence of the relaxation intensity suggest that the proton conduction is due to the Grotthuss mechanism with thermally excited H2O and NH3 molecules.

17.
Sci Rep ; 11(1): 12098, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103650

RESUMO

Glassy magnetic behavior has been observed in a wide range of crystalline magnetic materials called spin glass. Here, we report spin glass behavior in a structural glass of a magnetic ionic liquid, C4mimFeCl4. Magnetization measurements demonstrate that an antiferromagnetic ordering occurs at TN = 2.3 K in the crystalline state, while a spin glass transition occurs at TSG = 0.4 K in the structural glass state. In addition, localized magnetic excitations were found in the spin glass state by inelastic neutron scattering, in contrast to spin-wave excitations in the ordered phase of the crystalline sample. The localized excitation was scaled by the Bose population factor below TSG and gradually disappeared above TSG. This feature is highly reminiscent of boson peaks commonly observed in structural glasses. We suggest the "magnetic" boson peak to be one of the inherent dynamics of a spin glass state.

18.
Nat Commun ; 12(1): 4382, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282147

RESUMO

Dimensionality is a critical factor in determining the properties of solids and is an apparent built-in character of the crystal structure. However, it can be an emergent and tunable property in geometrically frustrated spin systems. Here, we study the spin dynamics of the tetrahedral cluster antiferromagnet, pharmacosiderite, via muon spin resonance and neutron scattering. We find that the spin correlation exhibits a two-dimensional characteristic despite the isotropic connectivity of tetrahedral clusters made of spin 5/2 Fe3+ ions in the three-dimensional cubic crystal, which we ascribe to two-dimensionalisation by geometrical frustration based on spin wave calculations. Moreover, we suggest that even one-dimensionalisation occurs in the decoupled layers, generating low-energy and one-dimensional excitation modes, causing large spin fluctuation in the classical spin system. Pharmacosiderite facilitates studying the emergence of low-dimensionality and manipulating anisotropic responses arising from the dimensionality using an external magnetic field.

19.
J Phys Chem Lett ; 11(17): 7279-7284, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787289

RESUMO

"Water-in-salt" (WIS) and "water-in-bisalt" (WIBS) electrolytes have recently been developed for Li-ion batteries, combining the safety and environmental friendliness of aqueous electrolytes with a larger operating window made possible by a solid-electrolyte interphase. We report quasielastic neutron scattering (QENS) measurements on solutions of a WIS electrolyte at two concentrations, 13.9 and 21 m (molal) lithium bis(trifluoromethane)sulfonimide LiTFSI in H2O/D2O and a WIBS electrolyte at (21 m LiTFSI + 7 m lithium triflate (LiOTf)) in H2O/D2O. The data were Fourier transformed to obtain experimental intermediate scattering functions (ISFs) and compared with corresponding quantities obtained from molecular dynamics (MD) simulations. Both QENS and MD ISFs could be fitted well by a single stretched exponential function to obtain apparent translational diffusion coefficients for the water molecules. The QENS values agree well with the MD simulations for the 13.9 and 21 m solutions, but MD simulations predict a slower relaxation of water compared to QENS for the WIBS electrolyte. Comparison of the incoherent and coherent scattering reveals much faster water dynamics compared with structural relaxation of the ionic framework, consistent with the nanodomain picture where the lithium diffusion occurs through the tortuous water domain around the slower relaxing ionic matrix, leading to highly non-Gaussian water motion.

20.
Nat Commun ; 11(1): 942, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071303

RESUMO

Low thermal conductivity is favorable for preserving the temperature gradient between the two ends of a thermoelectric material, in order to ensure continuous electron current generation. In high-performance thermoelectric materials, there are two main low thermal conductivity mechanisms: the phonon anharmonic in PbTe and SnSe, and phonon scattering resulting from the dynamic disorder in AgCrSe2 and CuCrSe2, which have been successfully revealed by inelastic neutron scattering. Using neutron scattering and ab initio calculations, we report here a mechanism of static local structure distortion combined with phonon-anharmonic-induced ultralow lattice thermal conductivity in α-MgAgSb. Since the transverse acoustic phonons are almost fully scattered by the compound's intrinsic distorted rocksalt sublattice, the heat is mainly transported by the longitudinal acoustic phonons. The ultralow thermal conductivity in α-MgAgSb is attributed to its atomic dynamics being altered by the structure distortion, which presents a possible microscopic route to enhance the performance of similar thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA