Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096593

RESUMO

While research into drug-target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug-target affinity (DTA) predictions by reducing the search space of potential-binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also, unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein-binding sites. The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA prediction algorithms in terms of four widely used evaluation metrics, including concordance index, mean squared error, modified squared correlation coefficient ($r^2_m$) and the area under the precision curve. We also contribute to three benchmark drug-traget interaction datasets by including additional information on 3D structure of all proteins contained in those datasets, which include the two most commonly used datasets, namely Kiba and Davis, as well as the data from IDG-DREAM drug-kinase binding prediction challenge. Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. The relatively high agreement between computationally predicted and experimentally observed binding interactions supports the potential of our framework as the next-generation pipeline for prediction models in drug repurposing.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Desenvolvimento de Medicamentos , Proteínas/química , Sítios de Ligação
2.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35817396

RESUMO

In this study, we introduce an interpretable graph-based deep learning prediction model, AttentionSiteDTI, which utilizes protein binding sites along with a self-attention mechanism to address the problem of drug-target interaction prediction. Our proposed model is inspired by sentence classification models in the field of Natural Language Processing, where the drug-target complex is treated as a sentence with relational meaning between its biochemical entities a.k.a. protein pockets and drug molecule. AttentionSiteDTI enables interpretability by identifying the protein binding sites that contribute the most toward the drug-target interaction. Results on three benchmark datasets show improved performance compared with the current state-of-the-art models. More significantly, unlike previous studies, our model shows superior performance, when tested on new proteins (i.e. high generalizability). Through multidisciplinary collaboration, we further experimentally evaluate the practical potential of our proposed approach. To achieve this, we first computationally predict the binding interactions between some candidate compounds and a target protein, then experimentally validate the binding interactions for these pairs in the laboratory. The high agreement between the computationally predicted and experimentally observed (measured) drug-target interactions illustrates the potential of our method as an effective pre-screening tool in drug repurposing applications.


Assuntos
Desenvolvimento de Medicamentos , Processamento de Linguagem Natural , Reposicionamento de Medicamentos , Ligação Proteica , Proteínas/química
3.
Nanomedicine ; 50: 102679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116556

RESUMO

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Camundongos , Animais , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética
4.
Molecules ; 28(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446852

RESUMO

There is intense interest in developing long-lasting, potent, and broad-spectrum antiviral disinfectants. Ceria nanoparticles (CNPs) can undergo surface redox reactions (Ce3+ ↔ Ce4+) to generate ROS without requiring an external driving force. Here, we tested the mechanism behind our prior finding of potent inactivation of enveloped and non-enveloped RNA viruses by silver-modified CNPs, AgCNP1 and AgCNP2. Treatment of human respiratory viruses, coronavirus OC43 and parainfluenza virus type 5 (PIV5) with AgCNP1 and 2, respectively, prevented virus interactions with host cell receptors and resulted in virion aggregation. Rhinovirus 14 (RV14) mutants were selected to be resistant to inactivation by AgCNP2. Sequence analysis of the resistant virus genomes predicted two amino acid changes in surface-located residues D91V and F177L within capsid protein VP1. Consistent with the regenerative properties of CNPs, surface-applied AgCNP1 and 2 inactivated a wide range of structurally diverse viruses, including enveloped (OC43, SARS-CoV-2, and PIV5) and non-enveloped RNA viruses (RV14 and feline calicivirus; FCV). Remarkably, a single application of AgCNP1 and 2 potently inactivated up to four sequential rounds of virus challenge. Our results show broad-spectrum and long-lasting anti-viral activity of AgCNP nanoparticles, due to targeting of viral surface proteins to disrupt interactions with cellular receptors.


Assuntos
COVID-19 , Calicivirus Felino , Desinfetantes , Nanopartículas , Animais , Gatos , Humanos , SARS-CoV-2/genética , Antivirais/farmacologia , Vírion , RNA , Calicivirus Felino/genética
5.
Molecules ; 27(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35566330

RESUMO

Drug-target interaction (DTI) prediction through in vitro methods is expensive and time-consuming. On the other hand, computational methods can save time and money while enhancing drug discovery efficiency. Most of the computational methods frame DTI prediction as a binary classification task. One important challenge is that the number of negative interactions in all DTI-related datasets is far greater than the number of positive interactions, leading to the class imbalance problem. As a result, a classifier is trained biased towards the majority class (negative class), whereas the minority class (interacting pairs) is of interest. This class imbalance problem is not widely taken into account in DTI prediction studies, and the few previous studies considering balancing in DTI do not focus on the imbalance issue itself. Additionally, they do not benefit from deep learning models and experimental validation. In this study, we propose a computational framework along with experimental validations to predict drug-target interaction using an ensemble of deep learning models to address the class imbalance problem in the DTI domain. The objective of this paper is to mitigate the bias in the prediction of DTI by focusing on the impact of balancing and maintaining other involved parameters at a constant value. Our analysis shows that the proposed model outperforms unbalanced models with the same architecture trained on the BindingDB both computationally and experimentally. These findings demonstrate the significance of balancing, which reduces the bias towards the negative class and leads to better performance. It is important to note that leaning on computational results without experimentally validating them and by relying solely on AUROC and AUPRC metrics is not credible, particularly when the testing set remains unbalanced.


Assuntos
Desenvolvimento de Medicamentos , Descoberta de Drogas , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Interações Medicamentosas
6.
Phys Chem Chem Phys ; 17(35): 22900-10, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26266702

RESUMO

A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.


Assuntos
Sequestradores de Radicais Livres/química , Raios gama , Grafite/química , Nanocompostos/química , Polietilenos/química , Estrutura Molecular
7.
Phys Chem Chem Phys ; 16(42): 23108-17, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25252211

RESUMO

Ultra high molecular weight polyethylene (PE) is a structural polymer widely used in biomedical implants. The mechanical properties of PE can be improved either by controlled crystalline orientation (texture) or by the addition of reinforcing agents. However, the combinatorial effect has not received much attention. The objective of this study was to characterize the structure and mechanical properties of PE composites incorporating multiwall carbon nanotubes (MWCNT) and reduced graphene oxide (RGO) subjected to hot rolling. The wide angle X-ray diffraction studies revealed that mechanical deformation resulted in a mixture of orthorhombic and monoclinic crystals. Furthermore, the presence of nanoparticles resulted in lower crystallinity in PE with smaller crystallite size, more so in RGO than in MWCNT composites. Rolling strengthened the texture of both orthorhombic and the monoclinic phases in PE. Presence of RGO weakened the texture of both phases of PE after rolling whereas MWCNT only mildly weakened the texture. This resulted in a reduction in the elastic modulus of RGO composites whereas moduli of neat polymer and the MWCNT composite increased after rolling. This study provides new insight into the role of nanoparticles in texture evolution during polymer processing with implications for processing of structural polymer composites.

8.
Adv Mater ; 36(10): e2211261, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37000888

RESUMO

Reducible metal oxide nanozymes (rNZs) are a subject of intense recent interest due to their catalytic nature, ease of synthesis, and complex surface character. Such materials contain surface sites which facilitate enzyme-mimetic reactions via substrate coordination and redox cycling. Further, these surface reactive sites are shown to be highly sensitive to stresses within the nanomaterial lattice, the physicochemical environment, and to processing conditions occurring as part of their syntheses. When administered in vivo, a complex protein corona binds to the surface, redefining its biological identity and subsequent interactions within the biological system. Catalytic activities of rNZs each deliver a differing impact on protein corona formation, its composition, and in turn, their recognition, and internalization by host cells. Improving the understanding of the precise principles that dominate rNZ surface-biomolecule adsorption raises the question of whether designer rNZs can be engineered to prevent corona formation, or indeed to produce "custom" protein coronas applied either in vitro, and preadministration, or formed immediately upon their exposure to body fluids. Here, fundamental surface chemistry processes and their implications in rNZ material performance are considered. In particular, material structures which inform component adsorption from the application environment, including substrates for enzyme-mimetic reactions are discussed.


Assuntos
Nanoestruturas , Coroa de Proteína , Coroa de Proteína/química , Óxidos , Adsorção
9.
Adv Healthc Mater ; 13(9): e2302835, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117082

RESUMO

Periprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface. This blueprint may be applicable to PJI. The aim is to investigate Lactobacillus acidophilus spp. and their isolated extracellular-derived proteins (LaEPs) on PJI-relevant Staphylococcus aureus, methicillin-resistant S. aureus, and Escherichia coli planktonic growth and biofilm formation in vitro. The effect of LaEPs on cultured macrophages and osteogenic, and adipogenic human bone marrow-derived mesenchymal stem cell differentiation is analyzed. Data show electrostatically-induced probiotic-pathogen species co-aggregation and pathogenic growth inhibition together with LaEP-induced biofilm prevention. LaEPs prime macrophages for enhanced microbial phagocytosis via cathepsin K, reduce lipopolysaccharide-induced DNA damage and receptor activator nuclear factor-kappa B ligand expression, and promote a reparative M2 macrophage morphology under chronic inflammatory conditions. LaEPs also significantly augment bone deposition while abating adipogenesis thus holding promise as a potential multimodal therapeutic strategy. Proteomic analyses highlight high abundance of lysyl endopeptidase, and urocanate reductase. Further, in vivo analyses are warranted to elucidate their role in the prevention and treatment of PJIs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Osteogênese/fisiologia , Lactobacillus acidophilus , Proteômica , Biofilmes , Inflamação/tratamento farmacológico
10.
Int J Biol Macromol ; 277(Pt 2): 134301, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094875

RESUMO

The requirement for accurate treatments for skin diseases and wounds, generated a rising interest towards multifunctional polymer composites, that are capable of mimicking the natural compositions in human body. Also, electroactive composite films disseminate endogenous electrical stimulations that encourage cell migration and its proliferation at wound site, proposing greater opportunities in upgrading the conventional wound patches. In this work, the composite film made of graphene oxide, Ag2O, PVA and chitosan were developed for wound healing applications, by the solution casting method. The even dispersibility of nanofiller in polymeric matrix was validated from the physicochemical analyses. The increment in roughness of the composite film surface was noted from AFM images. The thermal stability and porous nature of the polymer composite were also verified. A conductivity value of 0.16 × 10-4 Scm-1 was obtained for the film. From MTT assay, it was noted that the films were non-cytotoxic and supported cell adhesion along with cell proliferation of macrophage (RAW 264.7) cells. Moreover, the composite film also demonstrated non-hemolytic activity of <2 %, as well as excellent antibacterial activity towards E. coli and S. aureus. Thus, the obtained results validated that the prepared composite film could be chosen as an innovative candidate for developing state-of-the-art wound dressings.


Assuntos
Antibacterianos , Quitosana , Grafite , Óxidos , Álcool de Polivinil , Cicatrização , Grafite/química , Quitosana/química , Cicatrização/efeitos dos fármacos , Camundongos , Animais , Álcool de Polivinil/química , Óxidos/química , Antibacterianos/farmacologia , Antibacterianos/química , Células RAW 264.7 , Compostos de Prata/química , Compostos de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Polímeros/química , Bandagens , Humanos
11.
Int J Pharm ; 659: 124266, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38788971

RESUMO

Scientific research targeted at enhancing scaffold qualities has increased significantly during the last few decades. This emphasis frequently centres on adding different functions to scaffolds in order to increase their usefulness as instruments in the field of regenerative medicine. This study aims to investigate the efficacy of a multifunctional sustainable polymer scaffold, specifically Polycaprolactone (PCL) embedded with hydroxyapatite co-doped with vanadium and strontium (HVS), for bone tissue engineering applications. Polycaprolactone was used to fabricate the scaffold, while hydroxyapatite co-doped with vanadium and strontium (HVS) served as the nanofiller. A thorough investigation of the physicochemical and biological characteristics of the HVS nanofiller was carried out using cutting-edge techniques including Dynamic Light Scattering (DLS), and X-ray Photoelectron Spectroscopy (XPS) and in vitro cell studies. A cell viability rate of more than 70 % demonstrated that the synthesised nanofiller was cytotoxic, but in an acceptable range. The mechanical, biological, and physicochemical properties of the scaffold were extensively evaluated after the nanofiller was integrated. The water absorption characteristics of scaffold were enhanced by the addition of HVS nanofillers, leading to increased swelling, porosity, and hydrophilicity. These improvements speed up the flow of nutrients and the infiltration of cells into the scaffold. The scaffold has been shown to have important properties that stimulate bone cell activity, including better biodegradability and improved mechanical strength, which increased from 5.30 ± 0.37 to 10.58 ± 0.42 MPa. Further, its considerable antimicrobial qualities, blood-compatible nature, and capacity to promote biomineralization strengthen its appropriateness for usage in biomedical applications. Mainly, enhanced Alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) activity, and excellent cell adhesive properties, indicating the outstanding osteogenic potential observed in rat bone marrow-derived stromal cells (rBMSC). These combined attributes highlight the pivotal role of these nanocomposite scaffolds in the field of bone tissue engineering.


Assuntos
Sobrevivência Celular , Durapatita , Poliésteres , Estrôncio , Engenharia Tecidual , Alicerces Teciduais , Vanádio , Estrôncio/química , Engenharia Tecidual/métodos , Durapatita/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Vanádio/química , Osso e Ossos/efeitos dos fármacos , Ratos , Porosidade , Osteogênese/efeitos dos fármacos , Humanos , Materiais Biocompatíveis/química
12.
Tissue Eng Regen Med ; 21(2): 223-242, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856070

RESUMO

BACKGROUND: Poly (lactic acid) (PLA) is a biodegradable polyester that has been exploited for a variety of biomedical applications, including tissue engineering. The incorporation of ß-tricalcium phosphate (TCP) into PLA has imparted bioactivity to the polymeric matrix. METHODS: We have modified a 90%PLA-10%TCP composite with SiO2 and MgO (1, 5 and 10 wt%), separately, to further enhance the material bioactivity. Filaments were prepared by extrusion, and scaffolds were fabricated using 3D printing technology associated with fused filament fabrication. RESULTS: The PLA-TCP-SiO2 composites presented similar structural, thermal, and rheological properties to control PLA and PLA-TCP. In contrast, the PLA-TCP-MgO composites displayed absence of crystallinity, lower polymeric molecular weight, accelerated degradation ratio, and decreased viscosity within the 3D printing shear rate range. SiO2 and MgO particles were homogeneously dispersed within the PLA and their incorporation increased the roughness and protein adsorption of the scaffold, compared to a PLA-TCP scaffold. This favorable surface modification promoted cell proliferation, suggesting that SiO2 and MgO may have potential for enhancing the bio-integration of scaffolds in tissue engineering applications. However, high loads of MgO accelerated the polymeric degradation, leading to an acid environment that imparted the composite biocompatibility. The presence of SiO2 stimulated mesenchymal stem cells differentiation towards osteoblast; enhancing extracellular matrix mineralization, alkaline phosphatase (ALP) activity, and bone-related genes expression. CONCLUSION: The PLA-10%TCP-10%SiO2 composite presented the most promising results, especially for bone tissue regeneration, due to its intense osteogenic behavior. PLA-10%TCP-10%SiO2 could be used as an alternative implant for bone tissue engineering application.


Assuntos
Fosfatos de Cálcio , Óxido de Magnésio , Alicerces Teciduais , Óxido de Magnésio/farmacologia , Óxido de Magnésio/química , Alicerces Teciduais/química , Dióxido de Silício , Teste de Materiais , Poliésteres , Polímeros/química , Ácido Láctico/química , Impressão Tridimensional
13.
Biomaterials ; 307: 122527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518591

RESUMO

Community-associated and hospital-acquired infections caused by bacteria continue to yield major global challenges to human health. Bacterial contamination on abiotic surfaces is largely spread via high-touch surfaces and contemporary standard disinfection practices show limited efficacy, resulting in unsatisfactory therapeutic outcomes. New strategies that offer non-specific and broad protection are urgently needed. Herein, we report our novel ceria-silver nanozyme engineered at a molar ratio of 5:1 and with a higher trivalent (Ce3+) surface fraction. Our results reveal potent levels of surface catalytic activity on both wet and dry surfaces, with rapid, and complete eradication of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin resistant S. aureus, in both planktonic and biofilm form. Preferential electrostatic adherence of anionic bacteria to the cationic nanozyme surface leads to a catastrophic loss in both aerobic and anaerobic respiration, DNA damage, osmodysregulation, and finally, programmed bacterial lysis. Our data reveal several unique mechanistic avenues of synergistic ceria-Ag efficacy. Ag potentially increases the presence of Ce3+ sites at the ceria-Ag interface, thereby facilitating the formation of harmful H2O2, followed by likely permeation across the cell wall. Further, a weakened Ag-induced Ce-O bond may drive electron transfer from the Ec band to O2, thereby further facilitating the selective reduction of O2 toward H2O2 formation. Ag destabilizes the surface adsorption of molecular H2O2, potentially leading to higher concentrations of free H2O2 adjacent to bacteria. To this end, our results show that H2O2 and/or NO/NO2-/NO3- are the key liberators of antibacterial activity, with a limited immediate role being offered by nanozyme-induced ROS including O2•- and OH•, and likely other light-activated radicals. A mini-pilot proof-of-concept study performed in a pediatric dental clinic setting confirms residual, and continual nanozyme antibacterial efficacy over a 28-day period. These findings open a new approach to alleviate infections caused by bacteria for use on high-touch hard surfaces.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Peróxido de Hidrogênio , Prata/farmacologia , Prata/química , Staphylococcus aureus
14.
Biomed Mater ; 19(5)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38986475

RESUMO

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 µm pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Osteoblastos , Poliésteres , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Óxido de Zinco , Alicerces Teciduais/química , Fosfatos de Cálcio/química , Poliésteres/química , Regeneração Óssea/efeitos dos fármacos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Óxido de Zinco/química , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Teste de Materiais , Osso e Ossos , Regeneração Tecidual Guiada/métodos , Humanos , Animais , Fosfatase Alcalina/metabolismo , Módulo de Elasticidade , Porosidade , Propriedades de Superfície
15.
Adv Sci (Weinh) ; 11(21): e2308698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477537

RESUMO

By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.


Assuntos
Modelos Animais de Doenças , Osteoporose Pós-Menopausa , Ovariectomia , Animais , Feminino , Osteoporose Pós-Menopausa/metabolismo , Ratos , Humanos , Ratos Sprague-Dawley
16.
Cell Rep ; 43(3): 113938, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460130

RESUMO

Recent studies suggest that long non-coding RNAs (lncRNAs) contribute to medulloblastoma (MB) formation and progression. We have identified an lncRNA, lnc-HLX-2-7, as a potential therapeutic target in group 3 (G3) MBs. lnc-HLX-2-7 RNA specifically accumulates in the promoter region of HLX, a sense-overlapping gene of lnc-HLX-2-7, which activates HLX expression by recruiting multiple factors, including enhancer elements. RNA sequencing and chromatin immunoprecipitation reveal that HLX binds to and activates the promoters of several oncogenes, including TBX2, LIN9, HOXM1, and MYC. Intravenous treatment with cerium-oxide-nanoparticle-coated antisense oligonucleotides targeting lnc-HLX-2-7 (CNP-lnc-HLX-2-7) inhibits tumor growth by 40%-50% in an intracranial MB xenograft mouse model. Combining CNP-lnc-HLX-2-7 with standard-of-care cisplatin further inhibits tumor growth and significantly prolongs mouse survival compared with CNP-lnc-HLX-2-7 monotherapy. Thus, the lnc-HLX-2-7-HLX-MYC axis is important for regulating G3 MB progression, providing a strong rationale for using lnc-HLX-2-7 as a therapeutic target for G3 MBs.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Humanos , Camundongos , Animais , Retroalimentação , Meduloblastoma/genética , Meduloblastoma/patologia , Oncogenes , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
17.
Biomater Biosyst ; 13: 100086, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38213985

RESUMO

The fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- ß-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO2 nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds. The nanocomposite scaffolds possessed precise structure with fine print resolution, a homogenous distribution of TCP and CeNP components, and mechanical properties appropriate for bone tissue engineering applications. Cell proliferation assays using osteoblast cultures confirmed the cytocompatibility of the composites. In addition, the presence of CeNPs enhanced the proliferation and differentiation of mesenchymal stem cells; thereby, increasing alkaline phosphatase (ALP) activity, calcium deposition and bone-related gene expression. Results from this study have shown that the 3D printed PLA-TCP-10%CeO2 composite scaffold could be used as an alternative polymeric implant for bone tissue engineering applications: avoiding additional/revision surgeries and accelerating the regenerative process.

18.
Discov Nano ; 18(1): 157, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112849

RESUMO

The nanosystems for delivering drugs which have evolved with time, are being designed for greater drug efficiency and lesser side-effects, and are also complemented by the advancement of numerous innovative materials. In comparison to the organic nanoparticles, the inorganic nanoparticles are stable, have a wide range of physicochemical, mechanical, magnetic, and optical characteristics, and also have the capability to get modified using some ligands to enrich their attraction towards the molecules at the target site, which makes them appealing for bio-imaging and drug delivery applications. One of the strong benefits of using the inorganic nanoparticles-drug conjugate is the possibility of delivering the drugs to the affected cells locally, thus reducing the side-effects like cytotoxicity, and facilitating a higher efficacy of the therapeutic drug. This review features the direct and indirect effects of such inorganic nanoparticles like gold, silver, graphene-based, hydroxyapatite, iron oxide, ZnO, and CeO2 nanoparticles in developing effective drug carrier systems. This article has remarked the peculiarities of these nanoparticle-based systems in pulmonary, ocular, wound healing, and antibacterial drug deliveries as well as in delivering drugs across Blood-Brain-Barrier (BBB) and acting as agents for cancer theranostics. Additionally, the article sheds light on the plausible modifications that can be carried out on the inorganic nanoparticles, from a researcher's perspective, which could open a new pathway.

19.
Nanomaterials (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37947718

RESUMO

Nanotechnology has expanded what can be achieved in our approach to cancer treatment. The ability to produce and engineer functional nanoparticle formulations to elicit higher incidences of tumor cell radiolysis has resulted in substantial improvements in cancer cell eradication while also permitting multi-modal biomedical functionalities. These radiosensitive nanomaterials utilize material characteristics, such as radio-blocking/absorbing high-Z atomic number elements, to mediate localized effects from therapeutic irradiation. These materials thereby allow subsequent scattered or emitted radiation to produce direct (e.g., damage to genetic materials) or indirect (e.g., protein oxidation, reactive oxygen species formation) damage to tumor cells. Using nanomaterials that activate under certain physiologic conditions, such as the tumor microenvironment, can selectively target tumor cells. These characteristics, combined with biological interactions that can target the tumor environment, allow for localized radio-sensitization while mitigating damage to healthy cells. This review explores the various nanomaterial formulations utilized in cancer radiosensitivity research. Emphasis on inorganic nanomaterials showcases the specific material characteristics that enable higher incidences of radiation while ensuring localized cancer targeting based on tumor microenvironment activation. The aim of this review is to guide future research in cancer radiosensitization using nanomaterial formulations and to detail common approaches to its treatment, as well as their relations to commonly implemented radiotherapy techniques.

20.
Artigo em Inglês | MEDLINE | ID: mdl-37190884

RESUMO

Interest in space exploration has seen substantial growth following recent launch and operation of modern space technologies. In particular, the possibility of travel beyond low earth orbit is seeing sustained support. However, future deep space travel requires addressing health concerns for crews under continuous, longer-term exposure to adverse environmental conditions. Among these challenges, radiation-induced health issues are a major concern. Their potential to induce chronic illness is further potentiated by the microgravity environment. While investigations into the physiological effects of space radiation are still under investigation, studies on model ionizing radiation conditions, in earth and micro-gravity conditions, can provide needed insight into relevant processes. Substantial formation of high, sustained reactive oxygen species (ROS) evolution during radiation exposure is a clear threat to physiological health of space travelers, producing indirect damage to various cell structures and requiring therapeutic address. Radioprotection toward the skeletal system components is essential to astronaut health, due to the high radio-absorption cross-section of bone mineral and local hematopoiesis. Nanotechnology can potentially function as radioprotectant and radiomitigating agents toward ROS and direct radiation damage. Nanoparticle compositions such as gold, silver, platinum, carbon-based materials, silica, transition metal dichalcogenides, and ceria have all shown potential as viable radioprotectants to mitigate space radiation effects with nanoceria further showing the ability to protect genetic material from oxidative damage in several studies. As research into space radiation-induced health problems develops, this review intends to provide insights into the nanomaterial design to ameliorate pathological effects from ionizing radiation exposure. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Estresse Oxidativo , Radiação Ionizante , Espécies Reativas de Oxigênio , Estresse Oxidativo/efeitos da radiação , Oxirredução , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA