Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(18): 8173-86, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21724600

RESUMO

Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.


Assuntos
Genes Mitocondriais , Síndrome MELAS/genética , Mutação Puntual , RNA de Transferência de Leucina/genética , Aminoacilação , Sequência de Bases , Linhagem Celular , Respiração Celular , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Biossíntese de Proteínas , Transporte de RNA , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/metabolismo , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo
2.
Micromachines (Basel) ; 14(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630183

RESUMO

Photothermal therapy is one of the most promising and rapidly developing fields in modern oncology due to its high efficiency, localized action, and minimal invasiveness. Polymeric nanoparticles (NPs) incorporating low molecular-weight photothermal dyes are capable of delivering therapeutic agents to the tumor site, releasing them in a controlled manner, and providing tumor treatment under external light irradiation. The nanoparticle synthesis components are critically important factors that influence the therapeutically significant characteristics of polymeric NPs. Here, we show the impact of stabilizers and solvents used for synthesis on the properties of PLGA NPs for photothermal therapy. We synthesized PLGA nanocarriers using the microemulsion method and varied the nature of the solvent and the concentration of the stabilizer-namely, chitosan oligosaccharide lactate. A phthalocyanine-based photosensitizer, which absorbs light in the NIR window, was encapsulated in the PLGA NPs. When mQ water was used as a solvent and chitosan oligosaccharide lactate was used at a concentration of 1 g/L, the PLGA NPs exhibited highly promising photothermal properties. The final composite of the nanocarriers demonstrated photoinduced cytotoxicity against EMT6/P cells under NIR laser irradiation in vitro and was suitable for bioimaging.

3.
Pharmaceutics ; 15(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678860

RESUMO

Targeted nanoparticles of different origins are considered as new-generation diagnostic and therapeutic tools. However, there are no targeted drug formulations within the composition of nanoparticles approved by the FDA for use in the clinic, which is associated with the insufficient effectiveness of the developed candidates, the difficulties of their biotechnological production, and inadequate batch-to-batch reproducibility. Targeted protein self-assembling nanoparticles circumvent this problem since proteins are encoded in DNA and the final protein product is produced in only one possible way. We believe that the combination of the endless biomedical potential of protein carriers as nanoparticles and the standardized protein purification protocols will make significant progress in "magic bullet" creation possible, bringing modern biomedicine to a new level. In this review, we are focused on the currently existing platforms for targeted self-assembling protein nanoparticles based on transferrin, lactoferrin, casein, lumazine synthase, albumin, ferritin, and encapsulin proteins, as well as on proteins from magnetosomes and virus-like particles. The applications of these self-assembling proteins for targeted delivery in vitro and in vivo are thoroughly discussed, including bioimaging applications and different therapeutic approaches, such as chemotherapy, gene delivery, and photodynamic and photothermal therapy. A critical assessment of these protein platforms' efficacy in biomedicine is provided and possible problems associated with their further development are described.

4.
Pharmaceutics ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36678681

RESUMO

Nanoparticle-based chemotherapy is considered to be an effective approach to cancer diagnostics and therapy in modern biomedicine. However, efficient tumor targeting remains a great challenge due to the lack of specificity, selectivity, and high dosage of chemotherapeutic drugs required. A two-step targeted drug delivery strategy (DDS), involving cancer cell pre-targeting, first with a first nontoxic module and subsequent targeting with a second complementary toxic module, is a solution for decreasing doses for administration and lowering systemic toxicity. To prove two-step DDS efficiency, we performed a direct comparison of one-step and two-step DDS based on chemotherapy loaded PLGA nanoparticles and barnase*barstar interface. Namely, we developed and thoroughly characterized the two-step targeting strategy of HER2-overexpressing cancer cells. The first targeting block consists of anti-HER2 scaffold polypeptide DARPin9_29 fused with barstar. Barstar exhibits an extremely effective binding to ribonuclease barnase with Kaff = 1014 M-1, thus making the barnase*barstar protein pair one of the strongest known protein*protein complexes. A therapeutic PLGA-based nanocarrier coupled to barnase was used as a second targeting block. The PLGA nanoparticles were loaded with diagnostic dye, Nile Blue, and a chemotherapeutic drug, doxorubicin. We showed that the two-step DDS increases the performance of chemotherapy-loaded nanocarriers: IC50 of doxorubicin delivered via two-step DDS was more than 100 times lower than that for one-step DDS: IC50 = 43 ± 3 nM for two-step DDS vs. IC50 = 4972 ± 1965 nM for one-step DDS. The obtained results demonstrate the significant efficiency of two-step DDS over the classical one-step one. We believe that the obtained data will significantly change the direction of research in developing targeted anti-cancer drugs and promote the creation of new generation cancer treatment strategies.

5.
Pharmaceutics ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36678721

RESUMO

The extreme aggressiveness and lethality of many cancer types appeal to the problem of the development of new-generation treatment strategies based on smart materials with a mechanism of action that differs from standard treatment approaches. The targeted delivery of nanoparticles to specific cancer cell receptors is believed to be such a strategy; however, there are no targeted nano-drugs that have successfully completed clinical trials to date. To meet the challenge, we designed an alternative way to eliminate tumors in vivo. Here, we show for the first time that the targeting of lectin-equipped polymer nanoparticles to the glycosylation profile of cancer cells, followed by photodynamic therapy (PDT), is a promising strategy for the treatment of aggressive tumors. We synthesized polymer nanoparticles loaded with magnetite and a PDT agent, IR775 dye (mPLGA/IR775). The magnetite incorporation into the PLGA particle structure allows for the quantitative tracking of their accumulation in different organs and the performing of magnetic-assisted delivery, while IR775 makes fluorescent in vivo bioimaging as well as light-induced PDT possible, thus realizing the theranostics concept. To equip PLGA nanoparticles with targeting modality, the particles were conjugated with lectins of different origins, and the flow cytometry screening revealed that the most effective candidate for breast cancer cell labeling is ConA, a lectin from Canavalia ensiformis. In vivo experiments showed that after i.v. administration, mPLGA/IR775-ConA nanoparticles efficiently accumulated in the allograft tumors under the external magnetic field; produced a bright fluorescent signal for in vivo bioimaging; and led to 100% tumor growth inhibition after the single session of PDT, even for large solid tumors of more than 200 mm3 in BALB/c mice. The obtained results indicate that the mPLGA/IR775 nanostructure has great potential to become a highly effective oncotheranostic agent.

6.
ACS Omega ; 6(24): 16000-16008, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34179645

RESUMO

Targeted drug delivery is one of the most intriguing and challenging issues in modern biomedicine. For active targeting, full-size IgG molecules (150 kDa) are usually used. Recent studies have revealed that small artificial polypeptide scaffolds such as DARPins (14 kDa) and affibodies (8 kDa) are much more promising tools for drug delivery due to their small size, artificial nature, low immunogenicity, and many other properties. However, there is no comparative information on the targeting abilities of scaffold polypeptides, which should be taken into account when developing drug delivery systems (DDSs). The present work is the first comprehensive study on the comparison of the effectiveness of different HER2-targeting proteins within the architecture of nanoparticles. Namely, we synthesized trimodal nanoparticles: magnetic, fluorescent, and directed toward HER2 oncomarker on cancer cells. The magnetic particles (MPs) were covalently modified with (i) full-size IgG, 150 kDa, (ii) DARPin_G3, 14 kDa, and (iii) affibody ZHER2:342, 8 kDa. We showed that the number of DARPin_G3 and affibody ZHER2:342 molecules conjugated to the nanoparticle surface are 10 and 40 times higher, respectively, than the corresponding value for trastuzumab. Using the methods of magnetic particle quantification (MPQ)-cytometry and confocal microscopy, we showed that all types of the obtained magnetic conjugates specifically labeled HER2-overexpressing cells. Namely, we demonstrated that particle binding to HER2-positive cells is 1113 ± 39 fg/cell for MP*trastuzumab, 1431 ± 186 fg/cell for MP*ZHER2:342, and 625±21 fg/cell for MP*DARPin_G3, which are 2.77, 2.75, and 2.30 times higher than the corresponding values for control HER2-negative cells. Thus, we showed that the smallest HER2-recognizing polypeptide affibody ZHER2:342 is more effective in terms of specificity and selectivity in nanoparticle-mediated cell labeling.

7.
Hum Mol Genet ; 13(20): 2519-34, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15317755

RESUMO

Mitochondrial DNA (mtDNA) mutations are an important cause of human disease for which there is no efficient treatment. Our aim was to determine whether the A8344G mitochondrial tRNA(Lys) mutation, which can cause the MERRF (myoclonic epilepsy with ragged-red fibers) syndrome, could be complemented by targeting tRNAs into mitochondria from the cytosol. Import of small RNAs into mitochondria has been demonstrated in many organisms, including protozoans, plants, fungi and animals. Although human mitochondria do not import tRNAs in vivo, we previously demonstrated that some yeast tRNA derivatives can be imported into isolated human mitochondria. We show here that yeast tRNALys derivatives expressed in immortalized human cells and in primary human fibroblasts are partially imported into mitochondria. Imported tRNAs are correctly aminoacylated and are able to participate in mitochondrial translation. In transmitochondrial cybrid cells and in patient-derived fibroblasts bearing the MERRF mutation, import of tRNALys is accompanied by a partial rescue of mitochondrial functions affected by the mutation such as mitochondrial translation, activity of respiratory complexes, electrochemical potential across the mitochondrial membrane and respiration rate. Import of a tRNALys with a mutation in the anticodon preventing recognition of the lysine codons does not lead to any rescue, whereas downregulation of the transgenic tRNAs by small interfering RNA (siRNA) transiently abolishes the functional rescue, showing that this rescue is due to the import. These findings prove for the first time the functionality of imported tRNAs in human mitochondria in vivo and highlight the potential for exploiting the RNA import pathway to treat patients with mtDNA diseases.


Assuntos
DNA Mitocondrial/genética , Síndrome MERRF/genética , Mitocôndrias/metabolismo , Mutação/genética , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Anticódon/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , DNA/genética , Complexo IV da Cadeia de Transporte de Elétrons/análise , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Síndrome MERRF/metabolismo , Mitocôndrias/química , Biossíntese de Proteínas , Transporte de RNA , RNA Interferente Pequeno/genética , RNA de Transferência de Lisina/análise , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA