Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(11): 4119-4136, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30622137

RESUMO

TGFß signaling via SMAD proteins and protein kinase pathways up- or down-regulates the expression of many genes and thus affects physiological processes, such as differentiation, migration, cell cycle arrest, and apoptosis, during developmental or adult tissue homeostasis. We here report that NUAK family kinase 1 (NUAK1) and NUAK2 are two TGFß target genes. NUAK1/2 belong to the AMP-activated protein kinase (AMPK) family, whose members control central and protein metabolism, polarity, and overall cellular homeostasis. We found that TGFß-mediated transcriptional induction of NUAK1 and NUAK2 requires SMAD family members 2, 3, and 4 (SMAD2/3/4) and mitogen-activated protein kinase (MAPK) activities, which provided immediate and early signals for the transient expression of these two kinases. Genomic mapping identified an enhancer element within the first intron of the NUAK2 gene that can recruit SMAD proteins, which, when cloned, could confer induction by TGFß. Furthermore, NUAK2 formed protein complexes with SMAD3 and the TGFß type I receptor. Functionally, NUAK1 suppressed and NUAK2 induced TGFß signaling. This was evident during TGFß-induced epithelial cytostasis, mesenchymal differentiation, and myofibroblast contractility, in which NUAK1 or NUAK2 silencing enhanced or inhibited these responses, respectively. In conclusion, we have identified a bifurcating loop during TGFß signaling, whereby transcriptional induction of NUAK1 serves as a negative checkpoint and NUAK2 induction positively contributes to signaling and terminal differentiation responses to TGFß activity.


Assuntos
Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo
2.
Cancer Discov ; 14(6): 934-952, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38592405

RESUMO

Metastases, which are the leading cause of death in patients with cancer, have metabolic vulnerabilities. Alterations in metabolism fuel the energy and biosynthetic needs of metastases but are also needed to activate cell state switches in cells leading to invasion, migration, colonization, and outgrowth in distant organs. Specifically, metabolites can activate protein kinases as well as receptors and they are crucial substrates for posttranslational modifications on histone and nonhistone proteins. Moreover, metabolic enzymes can have moonlighting functions by acting catalytically, mainly as protein kinases, or noncatalytically through protein-protein interactions. Here, we summarize the current knowledge on metabolic signaling in cancer metastasis. SIGNIFICANCE: Effective drugs for the prevention and treatment of metastases will have an immediate impact on patient survival. To overcome the current lack of such drugs, a better understanding of the molecular processes that are an Achilles heel in metastasizing cancer cells is needed. One emerging opportunity is the metabolic changes cancer cells need to undergo to successfully metastasize and grow in distant organs. Mechanistically, these metabolic changes not only fulfill energy and biomass demands, which are often in common between cancer and normal but fast proliferating cells, but also metabolic signaling which enables the cell state changes that are particularly important for the metastasizing cancer cells.


Assuntos
Metástase Neoplásica , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais
3.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35954411

RESUMO

Glioblastoma multiforme (GBM) is a lethal brain tumor, characterized by enhanced proliferation and invasion, as well as increased vascularization and chemoresistance. The expression of the hyaluronan receptor CD44 has been shown to correlate with GBM progression and poor prognosis. Here, we sought to elucidate the molecular mechanisms by which CD44 promotes GBM progression by knocking out (KO) CD44, employing CRISPR/Cas9 gene editing in U251MG cells. CD44-depleted cells exhibited an impaired proliferation rate, as shown by the decreased cell numbers, decreased Ki67-positive cell nuclei, diminished phosphorylation of CREB, and increased levels of the cell cycle inhibitor p16 compared to control cells. Furthermore, the CD44 KO cells showed decreased stemness and increased senescence, which was manifested upon serum deprivation. In stem cell-like enriched spheres, RNA-sequencing analysis of U251MG cells revealed a CD44 dependence for gene signatures related to hypoxia, the glycolytic pathway, and G2 to M phase transition. Partially similar results were obtained when cells were treated with the γ-secretase inhibitor DAPT, which inhibits CD44 cleavage and therefore inhibits the release of the intracellular domain (ICD) of CD44, suggesting that certain transcriptional responses are dependent on CD44-ICD. Interestingly, the expression of molecules involved in hyaluronan synthesis, degradation, and interacting matrix proteins, as well as of platelet-derived growth factor (PDGF) isoforms and PDGF receptors, were also deregulated in CD44 KO cells. These results were confirmed by the knockdown of CD44 in another GBM cell line, U2990. Notably, downregulation of hyaluronan synthase 2 (HAS2) impaired the hypoxia-related genes and decreased the CD44 protein levels, suggesting a CD44/hyaluronan feedback circuit contributing to GBM progression.

4.
Cancers (Basel) ; 13(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804427

RESUMO

The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFß) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients.

5.
Intensive Care Med Exp ; 9(1): 53, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632531

RESUMO

BACKGROUND: Plasma hyaluronan concentrations are increased during sepsis but underlying mechanisms leading to high plasma hyaluronan concentration are poorly understood. In this study we evaluate the roles of plasma hyaluronan, effective plasma hyaluronidase (HYAL) activity and its endogenous plasma inhibition in clinical and experimental sepsis. We specifically hypothesized that plasma HYAL acts as endothelial glycocalyx shedding enzyme, sheddase. METHODS: Plasma hyaluronan, effective HYAL activity and HYAL inhibition were measured in healthy volunteers (n = 20), in patients with septic shock (n = 17, day 1 and day 4), in patients with acute pancreatitis (n = 7, day 1 and day 4) and in anesthetized and mechanically ventilated pigs (n = 16). Sixteen pigs were allocated (unblinded, open label) into three groups: Sepsis-1 with infusion of live Escherichia coli (E. coli) 1 × 108 CFU/h of 12 h (n = 5), Sepsis-2 with infusion of E. coli 1 × 108 CFU/h of 6 h followed by 1 × 109 CFU/h of the remaining 6 h (n = 5) or Control with no E. coli infusion (n = 6). RESULTS: In experimental E. coli porcine sepsis and in time controls, plasma hyaluronan increases with concomitant decrease in effective plasma HYAL activity and increase of endogenous HYAL inhibition. Plasma hyaluronan increased in patients with septic shock but not in acute pancreatitis. Effective plasma HYAL was lower in septic shock and acute pancreatitis as compared to healthy volunteers, while plasma HYAL inhibition was only increased in septic shock. CONCLUSION: Elevated plasma hyaluronan levels coincided with a concomitant decrease in effective plasma HYAL activity and increase of endogenous plasma HYAL inhibition both in experimental and clinical sepsis. In acute pancreatitis, effective plasma HYAL activity was decreased which was not associated with increased plasma hyaluronan concentrations or endogenous HYAL inhibition. The results suggest that plasma HYAL does not act as sheddase in sepsis or pancreatitis.

6.
Cell Signal ; 65: 109427, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654718

RESUMO

Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Neoplasias/metabolismo , Viroses/metabolismo , Animais , Transição Epitelial-Mesenquimal , Humanos , Receptores de Hialuronatos/química , Neoplasias/patologia , Transdução de Sinais
7.
Matrix Biol ; 78-79: 100-117, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374576

RESUMO

The tightly regulated biosynthesis and catabolism of the glycosaminoglycan hyaluronan, as well as its role in organizing tissues and cell signaling, is crucial for the homeostasis of tissues. Overexpression of hyaluronan plays pivotal roles in inflammation and cancer, and markedly high serum and tissue levels of hyaluronan are noted under such pathological conditions. This review focuses on the complexity of the regulation at transcriptional and posttranslational level of hyaluronan synthetic enzymes, and the outcome of their aberrant expression and accumulation of hyaluronan in clinical conditions, such as systemic B-cell cancers, aggressive breast carcinomas, metabolic diseases and virus infection.


Assuntos
Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Inflamação/metabolismo , Neoplasias/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Hialuronan Sintases/genética , Ácido Hialurônico/sangue , Processamento de Proteína Pós-Traducional , Transdução de Sinais
8.
Matrix Biol ; 80: 29-45, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194979

RESUMO

The glycosaminoglycan hyaluronan has a crucial role in tissue organization and cell signaling. Hyaluronan accumulates in conjunction with rapid tissue remodeling during embryogenesis, as well as in inflammatory conditions and cancer. We report a negative correlation between the expression of genes encoding hyaluronan synthase HAS2, its natural antisense transcript HAS2-AS, the chromatin modulating factor HMGA2 and transforming growth factor-ß (TGFß), and survival of patients with invasive breast carcinomas. In mouse mammary epithelial cells, TGFß activates Smad and non-Smad signaling pathways, resulting in the transcriptional induction of Has2, Has2as (the mouse ortholog of HAS2-AS) and Hmga2, as well as epithelial-mesenchymal transition (EMT)-promoting transcription factors, such as Snail. Importantly, Has2as abrogation suppressed the TGFß induction of EMT markers, including Snai1, Hmga2, Fn1, and suppressed the mesenchymal phenotype. TGFß induction of Hmga2, Has2as and Has2, and synthesis of hyaluronan were accompanied with activation of Akt and Erk1/2 MAP-kinase signaling and were required for breast cancer cell motility. Importantly, the hyaluronan receptor Cd44, but not Hmmr, was required for TGFß-mediated EMT phenotype. Interestingly, Has2as was found to contribute to the maintenance of stem cell factors and breast cancer stemness. Our findings show that Has2as has a key role in TGFß- and HAS2-induced breast cancer EMT, migration and acquisition of stemness.


Assuntos
Neoplasias da Mama/genética , Proteína HMGA2/genética , Hialuronan Sintases/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/metabolismo , Humanos , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
9.
EBioMedicine ; 48: 425-441, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31526718

RESUMO

BACKGROUND: A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS: A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS: Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION: Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.


Assuntos
Biomarcadores , Dengue/sangue , Dengue/diagnóstico , Endotélio Vascular/metabolismo , Ácido Hialurônico/sangue , Permeabilidade Capilar , Linhagem Celular , Citocinas/metabolismo , Dengue/virologia , Vírus da Dengue/fisiologia , Células Endoteliais/metabolismo , Imunofluorescência , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Prognóstico , Ligação Proteica , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA