RESUMO
The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.
Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , LactenteRESUMO
Malignant pleural mesothelioma (MPM) is a rare, aggressive, and incurable cancer arising from the mesothelial lining of the pleura, with few available treatment options. We recently reported that loss of function of the nuclear deubiquitinase BRCA1-associated protein 1 (BAP1), a frequent event in MPM, is associated with sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. As a potential underlying mechanism, here we report that BAP1 negatively regulates the expression of TRAIL receptors: death receptor 4 (DR4) and death receptor 5 (DR5). Using tissue microarrays of tumor samples from MPM patients, we found a strong inverse correlation between BAP1 and TRAIL receptor expression. BAP1 knockdown increased DR4 and DR5 expression, whereas overexpression of BAP1 had the opposite effect. Reporter assays confirmed wt-BAP1, but not catalytically inactive BAP1 mutant, reduced promoter activities of DR4 and DR5, suggesting deubiquitinase activity is required for the regulation of gene expression. Co-immunoprecipitation studies demonstrated direct binding of BAP1 to the transcription factor Ying Yang 1 (YY1), and chromatin immunoprecipitation assays revealed BAP1 and YY1 to be enriched in the promoter regions of DR4 and DR5. Knockdown of YY1 also increased DR4 and DR5 expression and sensitivity to TRAIL. These results suggest that BAP1 and YY1 cooperatively repress transcription of TRAIL receptors. Our finding that BAP1 directly regulates the extrinsic apoptotic pathway will provide new insights into the role of BAP1 in the development of MPM and other cancers with frequent BAP1 mutations.
Assuntos
Mesotelioma Maligno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Fator de Transcrição YY1/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mesotelioma Maligno/genética , Mutação , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Fator de Transcrição YY1/genéticaRESUMO
BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are being extensively researched for cell therapy and tissue engineering. We have engineered MSCs to express the pro-apoptotic protein tumor necrosis factor-related apoptosis inducing ligand (TRAIL) and are currently preparing this genetically modified cell therapy for a phase 1/2a clinical trial in patients with metastatic lung cancer. To do this, we need to prepare a cryopreserved allogeneic MSCTRAIL cell bank for further expansion before patient delivery. The effects of cryopreservation on a genetically modified cell therapy product have not been clearly determined. METHODS: We tested different concentrations of dimethyl sulfoxide (DMSO) added to the human serum albumin ZENALB 4.5 and measured post-thaw cell viability, proliferation ability and differentiation characteristics. In addition, we examined the homing ability, TRAIL expression and cancer cell-killing capacities of cryopreserved genetically modified MSCs compared with fresh, continually cultured cells. RESULTS: We demonstrated that the post-thaw viability of MSCs in 5% DMSO (v/v) with 95% ZENALB 4.5 (v/v) is 85.7 ± 0.4%, which is comparable to that in conventional freezing media. We show that cryopreservation does not affect the long-term expression of TRAIL and that cryopreserved TRAIL-expressing MSCs exhibit similar levels of homing and, importantly, retain their potency in triggering cancer cell death. CONCLUSIONS: This study shows that cryopreservation is unlikely to affect the therapeutic properties of MSCTRAIL and supports the generation of a cryopreserved master cell bank.
Assuntos
Criopreservação/métodos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Células Cultivadas , Congelamento , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Receptores CXCR4/metabolismoRESUMO
BACKGROUND AIMS: Mesenchymal stromal cell (MSC) delivery of pro-apoptotic tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is an attractive strategy for anticancer therapy. MSCs expressing full-length human TRAIL (flT) or its soluble form (sT) have previously been shown to be effective for cancer killing. However, a comparison between the two forms has never been performed, leaving it unclear which approach is most effective. This study addresses the issue for the possible clinical application of TRAIL-expressing MSCs in the future. METHODS: MSCs were transduced with lentiviruses expressing flT or an isoleucine zipper-fused sT. TRAIL expression was examined and cancer cell apoptosis was measured after treatment with transduced MSCs or with MSC-derived soluble TRAIL. RESULTS: The transduction does not adversely affect cell phenotype. The sT-transduced MSCs (MSC-sT) secrete abundant levels of soluble TRAIL but do not present the protein on the cell surface. Interestingly, the flT-transduced MSCs (MSC-flT) not only express cell-surface TRAIL but also release flT into medium. These cells were examined for inducing apoptosis in 20 cancer cell lines. MSC-sT cells showed very limited effects. By contrast, MSC-flT cells demonstrated high cancer cell-killing efficiency. More importantly, MSC-flT cells can overcome some cancer cell resistance to recombinant TRAIL. In addition, both cell surface flT and secreted flT are functional for inducing apoptosis. The secreted flT was found to have higher cancer cell-killing capacity than either recombinant TRAIL or MSC-secreted sT. CONCLUSIONS: These observations demonstrate that MSC delivery of flT is superior to MSC delivery of sT for cancer therapy.
Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/terapia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Células-Tronco Mesenquimais/citologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução Genética/métodosRESUMO
Malignant pleural mesothelioma is a rare but devastating cancer of the pleural lining with no effective treatment. The tumour is often diffusely spread throughout the chest cavity, making surgical resection difficult, while systemic chemotherapy offers limited benefit. Bone marrow-derived mesenchymal stem cells (MSCs) home to and incorporate into tumour stroma, making them good candidates to deliver anticancer therapies. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a pro-apoptotic molecule that selectively induces apoptosis in cancer cells, leaving healthy cells unaffected. We hypothesised that human MSCs expressing TRAIL (MSCTRAIL) would home to an in vivo model of malignant pleural mesothelioma and reduce tumour growth. Human MSCs transduced with a lentiviral vector encoding TRAIL were shown in vitro to kill multiple malignant mesothelioma cell lines as predicted by sensitivity to recombinant TRAIL (rTRAIL). In vivo MSC homing was delineated using dual fluorescence and bioluminescent imaging, and we observed that higher levels of MSC engraftment occur after intravenous delivery compared with intrapleural delivery of MSCs. Finally, we show that intravenous delivery of MSCTRAIL results in a reduction in malignant pleural mesothelioma tumour growth in vivo via an increase in tumour cell apoptosis.
Assuntos
Neoplasias Pulmonares/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Administração Tópica , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Infusões Intravenosas , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pleurais/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transfecção , Carga Tumoral/efeitos dos fármacos , Células Tumorais CultivadasRESUMO
Background: Human bone marrow mesenchymal stem cell (MSC) administration reduces inflammation in pre-clinical models of sepsis and sepsis-related lung injury, however clinical efficacy in patients has not yet been demonstrated. We previously showed that Alveolar Macrophage (AM) 11ß-hydroxysteroid dehydrogenase type-1 (HSD-1) autocrine signalling is impaired in critically ill sepsis patients, which promotes inflammatory injury. Administration of transgenic MSCs (tMSCs) which overexpress HSD-1 may enhance the anti-inflammatory effects of local glucocorticoids and be more effective at reducing inflammation in sepsis than cellular therapy alone. Methods: MSCs were transfected using a recombinant lentiviral vector containing the HSD-1 and GPF transgenes under the control of a tetracycline promoter. Thin layer chromatography assessed HSD-1 reductase activity in tMSCs. Mesenchymal stem cell phenotype was assessed by flow cytometry and bi-lineage differentiation. HSD-1 tMSCs were co-cultured with LPS-stimulated monocyte-derived macrophages (MDMs) from healthy volunteers prior to assessment of pro-inflammatory cytokine release. HSD-1 tMSCs were administered intravenously to mice undergoing caecal ligation and puncture (CLP). Results: MSCs were transfected with an efficiency of 91.1%, and maintained an MSC phenotype. Functional HSD-1 activity was demonstrated in tMSCs, with predominant reductase cortisol activation (peak 8.23 pM/hour/100,000 cells). HSD-1 tMSC co-culture with LPS-stimulated MDMs suppressed TNFα and IL-6 release. Administration of transgene activated HSD-1 tMSCs in a murine model of CLP attenuated neutrophilic inflammation more effectively than transgene inactive tMSCs (medians 0.403 v 1.36 × 106/ml, p = 0.033). Conclusion: The synergistic impact of HSD-1 transgene expression and MSC therapy attenuated neutrophilic inflammation in a mouse model of peritoneal sepsis more effectively than MSC therapy alone. Future studies investigating the anti-inflammatory capacity of HSD-1 tMSCs in models of sepsis-related direct lung injury and inflammatory diseases are required.
RESUMO
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Heterogeneidade Genética , Neoplasias Pulmonares , Camundongos Endogâmicos NOD , Camundongos SCID , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Feminino , Sequenciamento do Exoma , Genômica/métodos , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Xenoenxertos , Modelos Animais de Doenças , Idoso , Pessoa de Meia-IdadeRESUMO
Despite recent advances in treatment, lung cancer accounts for one third of all cancer-related deaths, underlining the need of development of new therapies. Mesenchymal stem cells (MSCs) possess the ability to specifically home into tumours and their metastases. This property of MSCs could be exploited for the delivery of various anti-tumour agents directly into tumours. However, MSCs are not simple delivery vehicles but cells with active physiological process. This review outlines various agents which can be delivered by MSCs with substantial emphasis on TRAIL (tumour necrosis factor-related apoptosis-inducing ligand).
Assuntos
Neoplasias Pulmonares/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , HumanosRESUMO
BACKGROUND: MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS: MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS: MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS: 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Assuntos
Neoplasias Pulmonares , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxiquinolina , Distribuição TecidualRESUMO
Introduction BRCA1 associated protein-1 (BAP1) is a key tumor driver in mesothelioma and a potential biomarker predicting response to several targeted therapies in clinical testing. Whether it also modulates response to cytotoxic chemotherapy is undetermined. This study used retrospective response analysis of BAP1 expression in archival tumor biopsies taken from patients in the MS01 trial (NCT00075699). We aimed to determine if BAP1 expression correlated with overall survival within the three treatment arms in this trial, namely active symptom control (ASC); ASC plus mitomycin, vinblastine and cisplatin (MVP); and ASC plus vinorelbine. Materials and methods We used immunohistochemical analysis of tumor samples from the MS01 trial to identify subgroups with and without nuclear BAP1 expression. We performed correlative analysis of clinical characteristics (age at diagnosis, sex and histological subtype) and overall survival within treatment arms with nuclear BAP1 expression. Results 89 tumor samples from the 409 patients originally in the trial were available for analysis. Of these, 60 samples harbored a positive internal control, in the form of positive staining of inflammatory cells for BAP1, and were carried forward for analysis. Correlative analysis suggested no significant association between loss of nuclear BAP1 expression and age at diagnosis, sex and histological subtype. Kaplan Meier survival analysis revealed a small, though non-significant, overall survival disadvantage associated with BAP1 expression in tumors from patients treated with vinorelbine. Discussion This exploratory analysis suggests BAP1 expression may modify response to vinorelbine in MPM, possibly due to prevention of mitotic microtubule formation. We suggest ongoing and planned clinical studies of vinorelbine in MPM assess BAP1 expression as a predictive biomarker of response.
Assuntos
Biomarcadores Tumorais/metabolismo , Cisplatino/uso terapêutico , Mesotelioma/diagnóstico , Neoplasias Pleurais/diagnóstico , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Vimblastina/uso terapêutico , Idoso , Feminino , Humanos , Masculino , Mesotelioma/tratamento farmacológico , Mesotelioma/mortalidade , Microtúbulos/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/mortalidade , Prognóstico , Estudos Retrospectivos , Análise de SobrevidaRESUMO
IMPACT STATEMENT: Methodologies for incorporation of cells into tissue-engineered grafts, particularly at the later preclinical stages, are suboptimal and non-validated, and monitoring cell fate within scaffolds cultured in bioreactors and in vivo is challenging. In this study, we demonstrate how bioluminescence imaging (BLI) can overcome these difficulties and allow quantitative cell tracking at multiple stages of the bioengineering preclinical pipeline. Our robust bioluminescence-based approach allowed reproducible longitudinal monitoring of mesoangioblast localization and survival in 2D/3D tissue culture, in organ-scale bioreactors, and in vivo. Our findings will encourage the use of BLI in tissue engineering studies, improving the overall quality of cell-scaffold interaction research.
Assuntos
Bioengenharia/métodos , Rastreamento de Células/métodos , Esôfago/fisiologia , Medições Luminescentes/métodos , Células-Tronco Mesenquimais/citologia , Músculo Esquelético/citologia , Mioblastos/citologia , Diferenciação Celular , Células Cultivadas , Criança , Humanos , Processamento de Imagem Assistida por Computador , Mioblastos/transplante , Alicerces TeciduaisRESUMO
Extracellular vesicles (EVs) are lipid membrane-enclosed nanoparticles released by cells. They mediate intercellular communication by transferring biological molecules and therefore have potential as innovative drug delivery vehicles. TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis of cancer cells. Unfortunately, the clinical application of recombinant rTRAIL has been hampered by its low bioavailability and resistance of cancer cells. EV-mediated TRAIL delivery may circumvent these problems. Mesenchymal stromal cells (MSCs) produce EVs and could be a good source for therapeutic EV production. We investigated if TRAIL could be expressed in MSC-derived EVs and examined their cancer cell-killing efficacy. EVs were isolated by ultracentrifugation and were membranous particles of 50-70 nm in diameter. Both MSC- and TRAIL-expressing MSC (MSCT)-derived EVs express CD63, CD9 and CD81, but only MSCT-EVs express surface TRAIL. MSCT-EVs induced apoptosis in 11 cancer cell lines in a dose-dependent manner but showed no cytotoxicity in primary human bronchial epithelial cells. Caspase activity inhibition or TRAIL neutralisation blocked the cytotoxicity of TRAIL-positive EVs. MSCT-EVs induced pronounced apoptosis in TRAIL-resistant cancer cells and this effect could be further enhanced using a CDK9 inhibitor. These data indicate that TRAIL delivery by MSC-derived EVs is an effective anticancer therapy.
RESUMO
Although squamous cell carcinomas (SqCCs) of the lungs, head and neck, oesophagus, and cervix account for up to 30% of cancer deaths, the mechanisms that regulate disease progression remain incompletely understood. Here, we use gene transduction and human tumor xenograft assays to establish that the tumour suppressor Cell adhesion molecule 1 (CADM1) inhibits SqCC proliferation and invasion, processes fundamental to disease progression. We determine that the extracellular domain of CADM1 mediates these effects by forming a complex with HER2 and integrin α6ß4 at the cell surface that disrupts downstream STAT3 activity. We subsequently show that treating CADM1 null tumours with the JAK/STAT inhibitor ruxolitinib mimics CADM1 gene restoration in preventing SqCC growth and metastases. Overall, this study identifies a novel mechanism by which CADM1 prevents SqCC progression and suggests that screening tumours for loss of CADM1 expression will help identify those patients most likely to benefit from JAK/STAT targeted chemotherapies.