Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(3): 340-354, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37201952

RESUMO

Pulmonary microvascular endothelial cells contribute to the integrity of the lung gas exchange interface, and they are highly glycolytic. Although glucose and fructose represent discrete substrates available for glycolysis, pulmonary microvascular endothelial cells prefer glucose over fructose, and the mechanisms involved in this selection are unknown. 6-Phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) is an important glycolytic enzyme that drives glycolytic flux against negative feedback and links glycolytic and fructolytic pathways. We hypothesized that PFKFB3 inhibits fructose metabolism in pulmonary microvascular endothelial cells. We found that PFKFB3 knockout cells survive better than wild-type cells in fructose-rich medium under hypoxia. Seahorse assays, lactate and glucose measurements, and stable isotope tracing showed that PFKFB3 inhibits fructose-hexokinase-mediated glycolysis and oxidative phosphorylation. Microarray analysis revealed that fructose upregulates PFKFB3, and PFKFB3 knockout cells increase fructose-specific GLUT5 (glucose transporter 5) expression. Using conditional endothelial-specific PFKFB3 knockout mice, we demonstrated that endothelial PFKFB3 knockout increases lung tissue lactate production after fructose gavage. Last, we showed that pneumonia increases fructose in BAL fluid in mechanically ventilated ICU patients. Thus, PFKFB3 knockout increases GLUT5 expression and the hexokinase-mediated fructose use in pulmonary microvascular endothelial cells that promotes their survival. Our findings indicate that PFKFB3 is a molecular switch that controls glucose versus fructose use in glycolysis and help better understand lung endothelial cell metabolism during respiratory failure.


Assuntos
Células Endoteliais , Frutose , Hexoquinase , Animais , Camundongos , Células Endoteliais/metabolismo , Glucose/metabolismo , Lactatos , Pulmão/metabolismo , Frutose/metabolismo
2.
J Biol Chem ; 298(1): 101482, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896150

RESUMO

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation. Here, we demonstrate that lung endothelial cells express a big tau isoform and three additional tau isoforms that are similar to neuronal tau, each containing four microtubule-binding repeat domains, and that tau is expressed in lung capillaries in vivo. To test whether infection elicits endothelial tau capable of causing transmissible tau aggregation, the cells were infected with Pseudomonas aeruginosa. The infection-induced tau released from endothelium into the medium-induced neuronal tau aggregation in reporter cells, including reporter cells that express either the four microtubule-binding repeat domains or the full-length tau. Infection-induced release of pathological tau variant(s) from endothelium, and the ability of the endothelial-derived tau to cause neuronal tau aggregation, was abolished in tau knockout cells. After bacterial lung infection, brain homogenates from WT mice, but not from tau knockout mice, initiated tau aggregation. Thus, we conclude that bacterial pneumonia initiates the release of lung endothelial-derived cytotoxic tau, which is capable of propagating a neuronal tauopathy.


Assuntos
Pneumopatias , Pneumonia Bacteriana , Tauopatias , Proteínas tau , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/patologia , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Humanos , Pulmão/irrigação sanguínea , Pneumopatias/metabolismo , Pneumopatias/microbiologia , Pneumopatias/patologia , Camundongos , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Isoformas de Proteínas , Pseudomonas aeruginosa , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
3.
FASEB J ; 35(9): e21797, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34383981

RESUMO

Pseudomonas aeruginosa is a frequent cause of hospital-acquired lung infections characterized by hyperinflammation, antibiotic resistance, and high morbidity/mortality. Here, we show that the genetic ablation of one cAMP-phosphodiesterase 4 subtype, PDE4B, is sufficient to protect mice from acute lung injury induced by P aeruginosa infection as it reduces pulmonary and systemic levels of pro-inflammatory cytokines, as well as pulmonary vascular leakage and mortality. Surprisingly, despite dampening immune responses, bacterial clearance in the lungs of PDE4B-KO mice is significantly improved compared to WT controls. In wildtypes, P aeruginosa-infection produces high systemic levels of several cytokines, including TNF-α, IL-1ß, and IL-6, that act as cryogens and render the animals hypothermic. This, in turn, diminishes their ability to clear the bacteria. Ablation of PDE4B curbs both the initial production of acute response cytokines, including TNF-α and IL-1ß, as well as their downstream signaling, specifically the induction of the secondary-response cytokine IL-6. This synergistic action protects PDE4B-KO mice from the deleterious effects of the P aeruginosa-induced cytostorm, while concurrently improving bacterial clearance, rather than being immunosuppressive. These benefits of PDE4B ablation are in contrast to the effects resulting from treatment with PAN-PDE4 inhibitors, which have been shown to increase bacterial burden and dissemination. Thus, PDE4B represents a promising therapeutic target in settings of P aeruginosa lung infections.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/microbiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipotermia/metabolismo , Hipotermia/microbiologia , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Animais , Citocinas/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores da Fosfodiesterase 4/farmacologia , Infecções por Pseudomonas/microbiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
FASEB J ; 35(9): e21807, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34384141

RESUMO

Pneumonia causes short- and long-term cognitive dysfunction in a high proportion of patients, although the mechanism(s) responsible for this effect are unknown. Here, we tested the hypothesis that pneumonia-elicited cytotoxic amyloid and tau variants: (1) are present in the circulation during infection; (2) lead to impairment of long-term potentiation; and, (3) inhibit long-term potentiation dependent upon tau. Cytotoxic amyloid and tau species were recovered from the blood and the hippocampus following pneumonia, and they were present in the extracorporeal membrane oxygenation oxygenators of patients with pneumonia, especially in those who died. Introduction of immunopurified blood-borne amyloid and tau into either the airways or the blood of uninfected animals acutely and chronically impaired hippocampal information processing. In contrast, the infection did not impair long-term potentiation in tau knockout mice and the amyloid- and tau-dependent disruption in hippocampal signaling was less severe in tau knockout mice. Moreover, the infection did not elicit cytotoxic amyloid and tau variants in tau knockout mice. Therefore, pneumonia initiates a tauopathy that contributes to cognitive dysfunction.


Assuntos
Pneumonia/complicações , Tauopatias/etiologia , Adulto , Idoso , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Pneumonia/metabolismo , Ratos , Tauopatias/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
5.
Am J Respir Cell Mol Biol ; 65(6): 630-645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251286

RESUMO

Low tidal volume ventilation protects the lung in mechanically ventilated patients. The impact of the accompanying permissive hypoxemia and hypercapnia on endothelial cell recovery from injury is poorly understood. CA (carbonic anhydrase) IX is expressed in pulmonary microvascular endothelial cells (PMVECs), where it contributes to CO2 and pH homeostasis, bioenergetics, and angiogenesis. We hypothesized that CA IX is important for PMVEC survival and that CA IX expression and release from PMVECs are increased during infection. Although the plasma concentration of CA IX was unchanged in human and rat pneumonia, there was a trend toward increasing CA IX in the bronchoalveolar fluid of mechanically ventilated critically ill patients with pneumonia and a significant increase in CA IX in the lung tissue lysates of pneumonia rats. To investigate the functional implications of the lung CA IX increase, we generated PMVEC cell lines harboring domain-specific CA IX mutations. By using these cells, we found that infection promotes intracellular (IC) expression, release, and MMP (metalloproteinase)-mediated extracellular cleavage of CA IX in PMVECs. IC domain deletion uniquely impaired CA IX membrane localization. Loss of the CA IX IC domain promoted cell death after infection, suggesting that the IC domain has an important role in PMVEC survival. We also found that hypoxia improves survival, whereas hypercapnia reverses the protective effect of hypoxia, during infection. Thus, we report 1) that CA IX increases in the lungs of pneumonia rats and 2) that the CA IX IC domain and hypoxia promote PMVEC survival during infection.


Assuntos
Anidrase Carbônica IX/metabolismo , Células Endoteliais/enzimologia , Pulmão/enzimologia , Pneumonia Bacteriana/enzimologia , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Hipóxia Celular , Humanos , Masculino , Ratos , Ratos Endogâmicos F344
6.
FASEB J ; 34(9): 12533-12548, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738081

RESUMO

Inhibitors of cAMP-phosphodiesterase 4 (PDE4) exert a number of promising therapeutic benefits, but adverse effects, in particular emesis and nausea, have curbed their clinical utility. Here, we show that PAN-selective inhibition of PDE4, but not inhibition of PDE3, causes a time- and dose-dependent accumulation of chow in the stomachs of mice fed ad libitum without changing the animals' food intake or the weight of their intestines, suggesting that PDE4 inhibition impairs gastric emptying. Indeed, PDE4 inhibition induced gastric retention in an acute model of gastric motility that traces the passage of a food bolus through the stomach over a 30 minutes time period. In humans, abnormal gastric retention of food is known as gastroparesis, a syndrome predominated by nausea (>90% of cases) and vomiting (>80% of cases). We thus explored the abnormal gastric retention induced by PDE4 inhibition in mice under the premise that it may represent a useful correlate of emesis and nausea. Delayed gastric emptying was produced by structurally distinct PAN-PDE4 inhibitors including Rolipram, Piclamilast, Roflumilast, and RS25344, suggesting that it is a class effect. PDE4 inhibitors induced gastric retention at similar or below doses commonly used to induce therapeutic benefits (e.g., 0.04 mg/kg Rolipram), thus mirroring the narrow therapeutic window of PDE4 inhibitors in humans. YM976, a PAN-PDE4 inhibitor that does not efficiently cross the blood-brain barrier, induced gastroparesis only at significantly higher doses (≥1 mg/kg). This suggests that PDE4 inhibition may act in part through effects on the autonomic nervous system regulation of gastric emptying and that PDE4 inhibitors that are not brain-penetrant may have an improved safety profile. The PDE4 family comprises four subtypes, PDE4A, B, C, and D. Selective ablation of any of these subtypes in mice did not induce gastroparesis per se, nor did it protect from PAN-PDE4 inhibitor-induced gastroparesis, indicating that gastric retention may result from the concurrent inhibition of multiple PDE4s. Thus, potentially, any of the four PDE4 subtypes may be targeted individually for therapeutic benefits without inducing nausea or emesis. Acute gastric retention induced by PDE4 inhibition is alleviated by treatment with the widely used prokinetic Metoclopramide, suggesting a potential of this drug to alleviate the side effects of PDE4 inhibitors. Finally, given that the cause of gastroparesis remains largely idiopathic, our findings open the possibility that a physiologic or pathophysiologic downregulation of PDE4 activity/expression may be causative in a subset of patients.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Gastroparesia/induzido quimicamente , Inibidores da Fosfodiesterase 4/efeitos adversos , Aminopiridinas/efeitos adversos , Animais , Benzamidas/efeitos adversos , Ciclopropanos/efeitos adversos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Piridinas/efeitos adversos , Pirimidinonas/efeitos adversos , Rolipram/efeitos adversos
7.
Am J Respir Cell Mol Biol ; 63(4): 519-530, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32628869

RESUMO

KD025 is a ROCK2 inhibitor currently being tested in clinical trials for the treatment of fibrotic lung diseases. The therapeutic effects of KD025 are partly due to its inhibition of profibrotic pathways and fat metabolism. However, whether KD025 affects pulmonary microvascular endothelial cell (PMVEC) function is unknown, despite evidence that alveolar-capillary membrane disruption constitutes major causes of death in fibrotic lung diseases. We hypothesized that KD025 regulates PMVEC metabolism, pH, migration, and survival, a series of interrelated functional characteristics that determine pulmonary barrier integrity. We used PMVECs isolated from Sprague Dawley rats. KD025 dose-dependently decreased lactate production and glucose consumption. The inhibitory effect of KD025 was more potent compared with other metabolic modifiers, including 2-deoxy-glucose, extracellular acidosis, dichloroacetate, and remogliflozin. Interestingly, KD025 increased oxidative phosphorylation, whereas 2-deoxy-glucose did not. KD025 also decreased intracellular pH and induced a compensatory increase in anion exchanger 2. KD025 inhibited PMVEC migration, but fasudil (nonspecific ROCK inhibitor) did not. We tested endothelial permeability in vivo using Evans Blue dye in the bleomycin pulmonary fibrosis model. Baseline permeability was decreased in KD025-treated animals independent of bleomycin treatment. Under hypoxia, KD025 increased PMVEC necrosis as indicated by increased lactate dehydrogenase release and propidium iodide uptake and decreased ATP; it did not affect Annexin V binding. ROCK2 knockdown had no effect on PMVEC metabolism, pH, and migration, but it increased nonapoptotic caspase-3 activity. Together, we report that KD025 promotes oxidative phosphorylation; decreases glycolysis, intracellular pH, and migration; and strengthens pulmonary barrier integrity in a ROCK2-independent manner.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Pulmão/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Anexina A5/metabolismo , Movimento Celular/efeitos dos fármacos , Desoxiglucose/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Propídio/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
8.
FASEB J ; 33(9): 10300-10314, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31211919

RESUMO

Patients with nosocomial pneumonia exhibit elevated levels of neurotoxic amyloid and tau proteins in the cerebrospinal fluid (CSF). In vitro studies indicate that pulmonary endothelium infected with clinical isolates of either Pseudomonas aeruginosa, Klebsiella pneumoniae, or Staphylococcus aureus produces and releases cytotoxic amyloid and tau proteins. However, the effects of the pulmonary endothelium-derived amyloid and tau proteins on brain function have not been elucidated. Here, we show that P. aeruginosa infection elicits accumulation of detergent insoluble tau protein in the mouse brain and inhibits synaptic plasticity. Mice receiving endothelium-derived amyloid and tau proteins via intracerebroventricular injection exhibit a learning and memory deficit in object recognition, fear conditioning, and Morris water maze studies. We compared endothelial supernatants obtained after the endothelia were infected with P. aeruginosa possessing an intact [P. aeruginosa isolated from patient 103 (PA103) supernatant] or defective [mutant strain of P. aeruginosa lacking a functional type 3 secretion system needle tip complex (ΔPcrV) supernatant] type 3 secretion system. Whereas the PA103 supernatant impaired working memory, the ΔPcrV supernatant had no effect. Immunodepleting amyloid or tau proteins from the PA103 supernatant with the A11 or T22 antibodies, respectively, overtly rescued working memory. Recordings from hippocampal slices treated with endothelial supernatants or CSF from patients with or without nosocomial pneumonia indicated that endothelium-derived neurotoxins disrupted the postsynaptic synaptic response. Taken together, these results establish a plausible mechanism for the neurologic sequelae consequent to nosocomial bacterial pneumonia.-Balczon, R., Pittet, J.-F., Wagener, B. M., Moser, S. A., Voth, S., Vorhees, C. V., Williams, M. T., Bridges, J. P., Alvarez, D. F., Koloteva, A., Xu, Y., Zha, X.-M., Audia, J. P., Stevens, T., Lin, M. T. Infection-induced endothelial amyloids impair memory.


Assuntos
Amiloide/toxicidade , Endotélio Vascular/metabolismo , Pulmão/metabolismo , Transtornos da Memória/patologia , Infecções por Pseudomonas/complicações , Pseudomonas aeruginosa/isolamento & purificação , Proteínas tau/toxicidade , Amiloide/metabolismo , Animais , Endotélio Vascular/patologia , Medo , Feminino , Humanos , Aprendizagem , Pulmão/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Infecções por Pseudomonas/microbiologia , Proteínas tau/metabolismo
9.
Am J Respir Cell Mol Biol ; 55(4): 500-510, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27119735

RESUMO

Dysregulated activation of the inflammasome-caspase-1-IL-1ß axis elicits damaging hyperinflammation during critical illnesses, such as pneumonia and sepsis. However, in critical illness models of Salmonella infection, burn, or shock, caspase-1 inhibition worsens outcomes. These paradoxical effects suggest that caspase-1 drives novel protective responses. Whether the protective effects of caspase-1 activation involve canonical immune cell and/or nonimmune cell responses is unknown. The objective of this study was to test the hypothesis that, in addition to its recognized proinflammatory function, caspase-1 initiates protective stress responses in nonimmune cells. In vivo, lung epithelial and endothelial barrier function and inflammation were assessed in mice infected with Pseudomonas aeruginosa in the presence or absence of a caspase-1 inhibitor. Lung endothelial barrier function was assessed ex vivo in isolated, perfused rat lungs infected with P. aeruginosa in the presence or absence of a caspase-1 inhibitor. Endothelial barrier function during P. aeruginosa infection was assessed in vitro in cultured rat wild-type pulmonary microvascular endothelial cells (PMVECs) or recombinant PMVECs engineered to decrease caspase-1 expression. We demonstrated in vivo that caspase-1 inhibition in P. aeruginosa-infected mice ameliorated hyperinflammation, but, counterintuitively, increased pulmonary edema. Ex vivo, caspase-1 inhibition increased pulmonary permeability in P. aeruginosa-infected isolated rat lungs. To uncouple caspase-1 from its canonical inflammatory role, we used cultured rat PMVECs in vitro and discovered that genetic knockdown of caspase-1 accelerated P. aeruginosa-induced barrier disruption. In conclusion, caspase-1 is a sentinel stress-response regulator that initiates proinflammatory responses and also initiates novel response(s) to protect PMVEC barrier function during pneumonia.

10.
Biochem Pharmacol ; 186: 114477, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609559

RESUMO

Despite major advances, there remains a need for novel anesthetic drugs or drug combinations with improved efficacy and safety profiles. Here, we show that inhibition of cAMP-phosphodiesterase 4 (PDE4), while not inducing anesthesia by itself, potently enhances the anesthetic effects of Isoflurane in mice. Treatment with several distinct PAN-PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast, and RS25344, significantly delayed the time-to-righting after Isoflurane anesthesia. Conversely, treatment with a PDE3 inhibitor, Cilostamide, or treatment with the potent, but non-brain-penetrant PDE4 inhibitor YM976, had no effect. These findings suggest that potentiation of Isoflurane hypnosis is a class effect of brain-penetrant PDE4 inhibitors, and that they act by synergizing with Isoflurane in inhibiting neuronal activity. The PDE4 family comprises four PDE4 subtypes, PDE4A to PDE4D. Genetic deletion of any of the four PDE4 subtypes in mice did not affect Isoflurane anesthesia per se. However, PDE4D knockout mice are largely protected from the effect of pharmacologic PDE4 inhibition, suggesting that PDE4D is the predominant, but not the sole PDE4 subtype involved in potentiating Isoflurane anesthesia. Pretreatment with Naloxone or Propranolol alleviated the potentiating effect of PDE4 inhibition, implicating opioid- and ß-adrenoceptor signaling in mediating PDE4 inhibitor-induced augmentation of Isoflurane anesthesia. Conversely, stimulation or blockade of α1-adrenergic, α2-adrenergic or serotonergic signaling did not affect the potentiation of Isoflurane hypnosis by PDE4 inhibition. We further show that pretreatment with a PDE4 inhibitor boosts the delivery of bacteria into the lungs of mice after intranasal infection under Isoflurane, thus providing a first example that PDE4 inhibitor-induced potentiation of Isoflurane anesthesia can critically impact animal models and must be considered as a factor in experimental design. Our findings suggest that PDE4/PDE4D inhibition may serve as a tool to delineate the exact molecular mechanisms of Isoflurane anesthesia, which remain poorly understood, and may potentially be exploited to reduce the clinical doses of Isoflurane required to maintain hypnosis.


Assuntos
Anestesia/métodos , Anestésicos Inalatórios/administração & dosagem , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Isoflurano/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo de Endireitamento/fisiologia
11.
Biochem Pharmacol ; 180: 114158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702371

RESUMO

Inhibitors of Type 4 cAMP-phosphodiesterases (PDE4s) exert a number of promising therapeutic benefits, including potent anti-inflammatory, memory- and cognition-enhancing, metabolic, and antineoplastic effects. We report here that treatment with a number of distinct PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast and RS25344, but not treatment with the PDE3-selective inhibitor Cilostamide, induces a rapid (10-30 min), substantial (-5 °C) and long-lasting (up to 5 h) decrease in core body temperature of C57BL/6 mice; thus, identifying a critical role of PDE4 also in the regulation of body temperature. As little as 0.04 mg/kg of the archetypal PDE4 inhibitor Rolipram induces hypothermia. As similar or higher doses of Rolipram were used in a majority of published animal studies, most of the reported findings are likely paralleled by, or potentially impacted by hypothermia induced by these drugs. We further show that PDE4 inhibition affects central body temperature regulation and acts by lowering the cold-defense balance point of behavioral (including posture and locomotion) and autonomous (including cutaneous tail vasodilation) cold-defense mechanisms. In line with the idea of an effect on central body temperature regulation, hypothermia is induced by moderate doses of various brain-penetrant PDE4 inhibitors, but not by similar doses of YM976, a PDE4 inhibitor that does not efficiently cross the blood-brain barrier. Finally, to begin delineating the mechanism of drug-induced hypothermia, we show that blockade of D2/3-type dopaminergic, but not ß-adrenergic, H1-histaminergic or opiate receptors, can alleviate PDE4 inhibitor-induced hypothermia. We thus propose that increased D2/3-type dopaminergic signaling, triggered by PDE4 inhibitor-induced and cAMP-mediated dopamine release in the thermoregulatory centers of the hypothalamus, is a significant contributor to PDE4 inhibitor-induced hypothermia.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Hipotermia/induzido quimicamente , Hipotermia/metabolismo , Locomoção/fisiologia , Inibidores da Fosfodiesterase 4/toxicidade , Animais , Benzamidas/farmacologia , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Relação Dose-Resposta a Droga , Feminino , Hipotermia/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4/farmacologia , Piridinas/farmacologia
12.
Pulm Circ ; 9(1): 2045894019826941, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30632898

RESUMO

Herein we describe lung vascular injury and repair using a rodent model of Pseudomonas aeruginosa pneumonia-induced acute respiratory distress syndrome (ARDS) during: 1) the exudative phase (48-hour survivors) and 2) the reparative/fibro-proliferative phase (1-week survivors). Pneumonia was induced by intratracheal instillation of P. aeruginosa strain PA103, and lung morphology and pulmonary vascular function were determined subsequently. Pulmonary vascular function was assessed in mechanically ventilated animals in vivo (air dead space, PaO2, and lung mechanics) and lung permeability was determined in isolated perfused lungs ex vivo (vascular filtration coefficient and extravascular lung water). At 48 hours post infection, histological analyses demonstrated capillary endothelial disruption, diffuse alveolar damage, perivascular cuffs, and neutrophil influx into lung parenchyma. Infected animals displayed clinical hallmarks of ARDS, including increased vascular permeability, increased dead space, impaired gas exchange, and decreased lung compliance. Overall, the animal infection model recapitulated the morphological and functional changes typically observed in lungs from patients during the exudative phase of ARDS. At 1 week post infection, there was lung histological and pulmonary vascular functional evidence of repair when compared with 48 hours post infection; however, some parameters were still impaired when compared with uninfected controls. Importantly, lungs displayed increased fibrosis and cellular hyperplasia reminiscent of lungs from patients during the fibro-proliferative phase of ARDS. Control, sham inoculated animals showed normal lung histology and function. These data represent the first comprehensive assessment of lung pathophysiology during the exudative and reparative/fibro-proliferative phases of P. aeruginosa pneumonia-induced ARDS, and position this pre-clinical model for use in interventional studies aimed at advancing clinical care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA