Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
New Phytol ; 241(3): 1236-1249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37986097

RESUMO

Biogenesis of the photosynthetic apparatus requires complicated molecular machinery, individual components of which are either poorly characterized or unknown. The BtpA protein has been described as a factor required for the stability of photosystem I (PSI) in cyanobacteria; however, how the BtpA stabilized PSI remains unexplained. To clarify the role of BtpA, we constructed and characterized the btpA-null mutant (ΔbtpA) in the cyanobacterium Synechocystis sp. PCC 6803. The mutant contained only c. 1% of chlorophyll and nearly no thylakoid membranes. However, this strain, growing only in the presence of glucose, was genetically unstable and readily generated suppressor mutations that restore the photoautotrophy. Two suppressor mutations were mapped into the hemA gene encoding glutamyl-tRNA reductase (GluTR) - the first enzyme of tetrapyrrole biosynthesis. Indeed, the GluTR was not detectable in the ΔbtpA mutant and the suppressor mutations restored biosynthesis of tetrapyrroles and photoautotrophy by increased GluTR expression or by improved GluTR stability/processivity. We further demonstrated that GluTR associates with a large BtpA oligomer and that BtpA is required for the stability of GluTR. Our results show that the BtpA protein is involved in the biogenesis of photosystems at the level of regulation of tetrapyrrole biosynthesis.


Assuntos
Cianobactérias , Tilacoides , Tilacoides/metabolismo , Clorofila/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Tetrapirróis/metabolismo , Cianobactérias/metabolismo
2.
Photosynth Res ; 152(3): 317-332, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35218444

RESUMO

High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and ß-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a 'generalist' that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of 'specialists' (HliA, B or D) dictate interactions with proteins other than Hlips.


Assuntos
Complexos de Proteínas Captadores de Luz , Synechocystis , Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(10): 4316-4325, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782830

RESUMO

Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.


Assuntos
Cílios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Sistemas CRISPR-Cas , Fatores de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Animais , Simulação de Acoplamento Molecular , Células NIH 3T3 , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteômica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Transdução de Sinais
4.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361011

RESUMO

Many lepidopteran larvae produce silk feeding shelters and cocoons to protect themselves and the developing pupa. As caterpillars evolved, the quality of the silk, shape of the cocoon, and techniques in forming and leaving the cocoon underwent a number of changes. The silk of Pseudoips prasinana has previously been studied using X-ray analysis and classified in the same category as that of Bombyx mori, suggesting that silks of both species have similar properties despite their considerable phylogenetic distance. In the present study, we examined P. prasinana silk using 'omics' technology, including silk gland RNA sequencing (RNA-seq) and a mass spectrometry-based proteomic analysis of cocoon proteins. We found that although the central repetitive amino acid sequences encoding crystalline domains of fibroin heavy chain molecules are almost identical in both species, the resulting fibers exhibit quite different mechanical properties. Our results suggest that these differences are most probably due to the higher content of fibrohexamerin and fibrohexamerin-like molecules in P. prasinana silk. Furthermore, we show that whilst P. prasinana cocoons are predominantly made of silk similar to that of other Lepidoptera, they also contain a second, minor silk type, which is present only at the escape valve.


Assuntos
Bombyx/genética , Evolução Molecular , Fibroínas/genética , Animais , Bombyx/classificação , Bombyx/metabolismo , Glândulas Exócrinas/metabolismo , Fibroínas/química , Filogenia , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
5.
Plant Physiol ; 176(4): 2931-2942, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463774

RESUMO

Photosystem II (PSII) is a large enzyme complex embedded in the thylakoid membrane of oxygenic phototrophs. The biogenesis of PSII requires the assembly of more than 30 subunits, with the assistance of a number of auxiliary proteins. In plants and cyanobacteria, the photosynthesis-affected mutant 68 (Pam68) is important for PSII assembly. However, its mechanisms of action remain unknown. Using a Synechocystis PCC 6803 strain expressing Flag-tagged Pam68, we purified a large protein complex containing ribosomes, SecY translocase, and the chlorophyll-binding PSII inner antenna CP47. Using 2D gel electrophoresis, we identified a pigmented Pam68-CP47 subcomplex and found Pam68 bound to ribosomes. Our results show that Pam68 binds to ribosomes even in the absence of CP47 translation. Furthermore, Pam68 associates with CP47 at an early phase of its biogenesis and promotes the synthesis of this chlorophyll-binding polypeptide until the attachment of the small PSII subunit PsbH. Deletion of both Pam68 and PsbH nearly abolishes the synthesis of CP47, which can be restored by enhancing chlorophyll biosynthesis. These results strongly suggest that ribosome-bound Pam68 stabilizes membrane segments of CP47 and facilitates the insertion of chlorophyll molecules into the translated CP47 polypeptide chain.


Assuntos
Proteínas de Bactérias/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Eletroforese em Gel Bidimensional , Complexos de Proteínas Captadores de Luz/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Complexo de Proteína do Fotossistema II/genética , Ligação Proteica , Synechocystis/genética , Synechocystis/metabolismo
7.
Plant Cell ; 26(3): 1200-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24681620

RESUMO

Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and ß-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.


Assuntos
Proteínas de Ligação à Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Plant Cell ; 26(3): 1267-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24681617

RESUMO

Macromolecular membrane assemblies of chlorophyll-protein complexes efficiently harvest and trap light energy for photosynthesis. To investigate the delivery of chlorophylls to the newly synthesized photosystem apoproteins, a terminal enzyme of chlorophyll biosynthesis, chlorophyll synthase (ChlG), was tagged in the cyanobacterium Synechocystis PCC 6803 (Synechocystis) and used as bait in pull-down experiments. We retrieved an enzymatically active complex comprising ChlG and the high-light-inducible protein HliD, which associates with the Ycf39 protein, a putative assembly factor for photosystem II, and with the YidC/Alb3 insertase. 2D electrophoresis and immunoblotting also provided evidence for the presence of SecY and ribosome subunits. The isolated complex contained chlorophyll, chlorophyllide, and carotenoid pigments. Deletion of hliD elevated the level of the ChlG substrate, chlorophyllide, more than 6-fold; HliD is apparently required for assembly of FLAG-ChlG into larger complexes with other proteins such as Ycf39. These data reveal a link between chlorophyll biosynthesis and the Sec/YidC-dependent cotranslational insertion of nascent photosystem polypeptides into membranes. We expect that this close physical linkage coordinates the arrival of pigments and nascent apoproteins to produce photosynthetic pigment-protein complexes with minimal risk of accumulating phototoxic unbound chlorophylls.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Cianobactérias/enzimologia , Carotenoides/metabolismo , Clorofila/metabolismo , Ligação Proteica
9.
Biochim Biophys Acta ; 1847(6-7): 534-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748970

RESUMO

The remarkable adaptability of diatoms living in a highly variable environment assures their prominence among marine primary producers. The present study integrates biochemical, biophysical and genomic data to bring new insights into the molecular mechanism of chromatic adaptation of pennate diatoms in model species Phaeodactylum tricornutum, a marine eukaryote alga possessing the capability to shift its absorption up to ~700 nm as a consequence of incident light enhanced in the red component. Presence of these low energy spectral forms of Chl a is manifested by room temperature fluorescence emission maximum at 710 nm (F710). Here we report a successful isolation of the supramolecular protein complex emitting F710 and identify a member of the Fucoxanthin Chlorophyll a/c binding Protein family, Lhcf15, as its key building block. This red-shifted antenna complex of P. tricornutum appears to be functionally connected to photosystem II. Phylogenetic analyses do not support relation of Lhcf15 of P. tricornutum to other known red-shifted antenna proteins thus indicating a case of convergent evolutionary adaptation towards survival in shaded environments.


Assuntos
Adaptação Fisiológica , Clorofila/metabolismo , Cor , Diatomáceas/fisiologia , Fluorescência , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila A , Luz , Filogenia , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
10.
Plant Cell Physiol ; 57(9): 1921-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27388341

RESUMO

Although the PSII complex is highly conserved in cyanobacteria and chloroplasts, the PsbU and PsbV subunits stabilizing the oxygen-evolving Mn4CaO5 cluster in cyanobacteria are absent in chloroplasts and have been replaced by the PsbP and PsbQ subunits. There is, however, a distant cyanobacterial homolog of PsbP, termed CyanoP, of unknown function. Here we show that CyanoP plays a role in the early stages of PSII biogenesis in Synechocystis sp. PCC 6803. CyanoP is present in the PSII reaction center assembly complex (RCII) lacking both the CP47 and CP43 modules and binds to the smaller D2 module. A small amount of larger PSII core complexes co-purifying with FLAG-tagged CyanoP indicates that CyanoP can accompany PSII on most of its assembly pathway. A role in biogenesis is supported by the accumulation of unassembled D1 precursor and impaired formation of RCII in a mutant lacking CyanoP. Interestingly, the pull-down preparations of CyanoP-FLAG from a strain lacking CP47 also contained PsbO, indicating engagement of this protein with PSII at a much earlier stage in assembly than previously assumed.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechocystis/genética
11.
Biomacromolecules ; 17(5): 1776-87, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27049111

RESUMO

The silks produced by caterpillars consist of fibroin proteins that form two core filaments, and sericin proteins that seal filaments into a fiber and conglutinate fibers in the cocoon. Sericin genes are well-known in Bombyx mori (Bombycidae) but have received little attention in other insects. This paper shows that Antheraea yamamai (Saturniidae) contains five sericin genes very different from the three sericin genes of B. mori. In spite of differences, all known sericins are characterized by short exons 1 and 2 (out of 3-12 exons), expression in the middle silk gland section, presence of repeats with high contents of Ser and charged amino acid residues, and secretion as a sticky silk component soluble in hot water. The B. mori sericins represent tentative phylogenetic lineages (I) BmSer1 and orthologs in Saturniidae, (II) BmSer2, and (III) BmSer3 and related sericins of Saturniidae and of the pyralid Galleria mellonella. The lineage (IV) seems to be limited to Saturniidae. Concerted evolution of the sericin genes was apparently associated with gene amplifications as well as gene loses. Differences in the silk fiber morphology indicate that the cocktail of sericins linking the filaments and coating the fiber is modified during spinning. Silks are composite biomaterials of conserved function in spite of great diversity of their composition.


Assuntos
Proteínas de Insetos/química , Mariposas/metabolismo , Sericinas/química , Seda/química , Sequência de Aminoácidos , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos , Sericinas/genética , Sericinas/metabolismo
12.
Biochim Biophys Acta ; 1837(6): 802-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24486443

RESUMO

A novel chlorophyll a containing pigment-protein complex expressed by cells of Chromera velia adapted to growth under red/far-red illumination [1]. Purification of the complex was achieved by means of anion-exchange chromatography and gel-filtration. The antenna is shown to be an aggregate of ~20kDa proteins of the light-harvesting complex (LHC) family, unstable in the isolated form. The complex possesses an absorption maximum at 705nm at room temperature in addition to the main chlorophyll a maximum at 677nm producing the major emission band at 714nm at room temperature. The far-red absorption is shown to be the property of the isolated aggregate in the intact form and lost upon dissociation. The purified complex was further characterized by circular dichroism spectroscopy and fluorescence spectroscopy. This work thus identified the third different class of antenna complex in C. velia after the recently described FCP-like and LHCr-like antennas. Possible candidates for red antennas are identified in other taxonomic groups, such as eustigmatophytes and the relevance of the present results to other known examples of red-shifted antenna from other organisms is discussed. This work appears to be the first successful isolation of a chlorophyll a-based far-red antenna complex absorbing above 700nm unrelated to LHCI.


Assuntos
Apicomplexa/metabolismo , Clorofila/metabolismo , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Resinas de Troca Aniônica , Clorofila A , Cromatografia em Gel , Cromatografia por Troca Iônica , Dicroísmo Circular
13.
Biochim Biophys Acta ; 1827(6): 723-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23428396

RESUMO

The structure and composition of the light harvesting complexes from the unicellular alga Chromera velia were studied by means of optical spectroscopy, biochemical and electron microscopy methods. Two different types of antennae systems were identified. One exhibited a molecular weight (18-19kDa) similar to FCP (fucoxanthin chlorophyll protein) complexes from diatoms, however, single particle analysis and circular dichroism spectroscopy indicated similarity of this structure to the recently characterized XLH antenna of xanthophytes. In light of these data we denote this antenna complex CLH, for "Chromera Light Harvesting" complex. The other system was identified as the photosystem I with bound Light Harvesting Complexes (PSI-LHCr) related to the red algae LHCI antennae. The result of this study is the finding that C. velia, when grown in natural light conditions, possesses light harvesting antennae typically found in two different, evolutionary distant, groups of photosynthetic organisms.


Assuntos
Alveolados/metabolismo , Complexos de Proteínas Captadores de Luz/fisiologia , Fotossíntese , Proteínas de Ligação à Clorofila/fisiologia , Dicroísmo Circular , Complexo de Proteína do Fotossistema I/fisiologia
14.
Mol Biol Evol ; 30(11): 2447-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23974208

RESUMO

The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function.


Assuntos
Complexos de ATP Sintetase/genética , Alveolados/genética , Genoma de Protozoário , Complexo de Proteína do Fotossistema I/genética , Proteínas de Protozoários/genética , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
15.
Biochim Biophys Acta Bioenerg ; 1865(1): 149015, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37742749

RESUMO

The aim of this study was to investigate how acclimation to medium-level, long-term, non-lethal iron limitation changes the electron flux around the Photosystem II of the oceanic diazotroph Trichodesmium erythraeum IMS101. Fe availability of about 5× and 100× lower than a replete level, i.e. conditions common in the natural environment of this cyanobacterium, were applied in chemostats. The response of the cells was studied not only in terms of growth, but also mechanistically, measuring the chlorophyll fluorescence of dark-adapted filaments via imaging fluorescence kinetic microscopy (FKM) with 0.3 ms time resolution. Combining these measurements with those of metal binding to proteins via online coupling of metal-free HPLC (size exclusion chromatography SEC) to sector-field ICP-MS allowed to track the fate of the photosystems, together with other metalloproteins. General increase of fluorescence has been observed, with the consequent decrease in the quantum yields φ of the PSII, while the efficiency ψ of the electron flux between PSII and the PSI remained surprisingly unchanged. This indicates the ability of Trichodesmium to cope with a situation that makes assembling the many iron clusters in Photosystem I a particular challenge, as shown by decreasing ratios of Fe to Mg in these proteins. The negative effect of Fe limitation on PSII may also be due to its fast turnover. A broader view was obtained from metalloproteomics via HPLC-ICP-MS, revealing a differential protein expression pattern under iron limitation with a drastic down-regulation especially of iron-containing proteins and some increase in low MW metal-binding complexes.


Assuntos
Metaloproteínas , Trichodesmium , Trichodesmium/metabolismo , Ferro/metabolismo , Metaloproteínas/metabolismo , Elétrons , Aclimatação
16.
Biochim Biophys Acta Bioenerg ; 1865(1): 149018, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37852568

RESUMO

Low Zn availability in soils is a problem in many parts of the world, with tremendous consequences for food and feed production because Zn deficiency affects the yield and quality of plants. In this study we investigated the consequences of Zn-limitation in hydroponically cultivated soybean (Glycine max L.) plants. Parameters of photosynthesis biophysics were determined by spatially and spectrally resolved Kautsky and OJIP fluorescence kinetics and oxygen production at two time points (V4 stage, after five weeks, and pod development stage, R5-R6, after 8-10 weeks). Lower NPQ at 730 nm and lower quantum yield of electron transport flux until PSI acceptors were observed, indicating an inhibition of the PSI acceptor side. Metalloproteomics showed that down-regulation of Cu/Zn-superoxide dismutase (CuZnSOD) and Zn­carbonic anhydrase (CA) were primary consequences of Zn-limitation. This explained the effects on photosynthesis in terms of decreased use of excitons, which consequently led to oxidative stress. Indeed, untargeted metabolomics revealed an accumulation of lipid oxidation products in the Zn-deficient leaves. Further response to Zn deficiency included up-regulation of gene expression of cell wall metabolism, response to (a)biotic stressors and antioxidant activity, which correlated with accumulation of antioxidants, Vit B6, (iso)flavonoids and phytoalexins.


Assuntos
Clorofila , Glycine max , Transporte de Elétrons , Glycine max/genética , Clorofila/metabolismo , Transcriptoma , Metaboloma , Antioxidantes , Zinco
17.
Biochim Biophys Acta Bioenerg ; 1865(1): 149017, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827327

RESUMO

Membrane-bound FtsH proteases are universally present in prokaryotes and in mitochondria and chloroplasts of eukaryotic cells. These metalloproteases are often critical for viability and play both protease and chaperone roles to maintain cellular homeostasis. In contrast to most bacteria bearing a single ftsH gene, cyanobacteria typically possess four FtsH proteases (FtsH1-4) forming heteromeric (FtsH1/3 and FtsH2/3) and homomeric (FtsH4) complexes. The functions and substrate repertoire of each complex are however poorly understood. To identify substrates of the FtsH4 protease complex we established a trapping assay in the cyanobacterium Synechocystis PCC 6803 utilizing a proteolytically inactivated trapFtsH4-His. Around 40 proteins were specifically enriched in trapFtsH4 pulldown when compared with the active FtsH4. As the list of putative FtsH4 substrates contained Ycf4 and Ycf37 assembly factors of Photosystem I (PSI), its core PsaB subunit and the IsiA chlorophyll-binding protein that associates with PSI during iron stress, we focused on these PSI-related proteins. Therefore, we analysed their degradation by FtsH4 in vivo in Synechocystis mutants and in vitro using purified substrates. The data confirmed that FtsH4 degrades Ycf4, Ycf37, IsiA, and also the individual PsaA and PsaB subunits in the unassembled state but not when assembled within the PSI complexes. A possible role of FtsH4 in the PSI life-cycle is discussed.


Assuntos
Peptídeo Hidrolases , Synechocystis , Peptídeo Hidrolases/metabolismo , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Metaloproteases/genética , Metaloproteases/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
18.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
19.
Parasit Vectors ; 17(1): 175, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570784

RESUMO

BACKGROUND: Helminth extracellular vesicles (EVs) are known to have a three-way communication function among parasitic helminths, their host and the host-associated microbiota. They are considered biological containers that may carry virulence factors, being therefore appealing as therapeutic and prophylactic target candidates. This study aims to describe and characterise EVs secreted by Sparicotyle chrysophrii (Polyopisthocotyla: Microcotylidae), a blood-feeding gill parasite of gilthead seabream (Sparus aurata), causing significant economic losses in Mediterranean aquaculture. METHODS: To identify proteins involved in extracellular vesicle biogenesis, genomic datasets from S. chrysophrii were mined in silico using known protein sequences from Clonorchis spp., Echinococcus spp., Fasciola spp., Fasciolopsis spp., Opisthorchis spp., Paragonimus spp. and Schistosoma spp. The location and ultrastructure of EVs were visualised by transmission electron microscopy after fixing adult S. chrysophrii specimens by high-pressure freezing and freeze substitution. EVs were isolated and purified from adult S. chrysophrii (n = 200) using a newly developed ultracentrifugation-size-exclusion chromatography protocol for Polyopisthocotyla, and EVs were characterised via nanoparticle tracking analysis and tandem mass spectrometry. RESULTS: Fifty-nine proteins involved in EV biogenesis were identified in S. chrysophrii, and EVs compatible with ectosomes were observed in the syncytial layer of the haptoral region lining the clamps. The isolated and purified nanoparticles had a mean size of 251.8 nm and yielded 1.71 × 108 particles · mL-1. The protein composition analysis identified proteins related to peptide hydrolases, GTPases, EF-hand domain proteins, aerobic energy metabolism, anticoagulant/lipid-binding, haem detoxification, iron transport, EV biogenesis-related, vesicle-trafficking and other cytoskeletal-related proteins. Several identified proteins, such as leucyl and alanyl aminopeptidases, calpain, ferritin, dynein light chain, 14-3-3, heat shock protein 70, annexin, tubulin, glutathione S-transferase, superoxide dismutase, enolase and fructose-bisphosphate aldolase, have already been proposed as target candidates for therapeutic or prophylactic purposes. CONCLUSIONS: We have unambiguously demonstrated for the first time to our knowledge the secretion of EVs by an ectoparasitic flatworm, inferring their biogenesis machinery at a genomic and transcriptomic level, and by identifying their location and protein composition. The identification of multiple therapeutic targets among EVs' protein repertoire provides opportunities for target-based drug discovery and vaccine development for the first time in Polyopisthocotyla (sensu Monogenea), and in a fish-ectoparasite model.


Assuntos
Vesículas Extracelulares , Platelmintos , Dourada , Trematódeos , Animais , Proteômica , Dourada/parasitologia
20.
Cell Rep ; 42(11): 113265, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37864789

RESUMO

In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.


Assuntos
Synechocystis , Synechocystis/metabolismo , Clorofila/metabolismo , Arginina/metabolismo , Ornitina , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA