Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Res ; 397(1): 61-76, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727755

RESUMO

Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.


Assuntos
Motilina , Oryzias , Receptores dos Hormônios Gastrointestinais , Animais , Oryzias/metabolismo , Oryzias/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Motilina/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/metabolismo , Encéfalo/metabolismo
2.
Dev Growth Differ ; 65(1): 6-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527293

RESUMO

Amphibian tadpoles are postulated to excrete ammonia as nitrogen metabolites but to shift from ammonotelism to ureotelism during metamorphosis. However, it is unknown whether ureagenesis occurs or plays a functional role before metamorphosis. Here, the mRNA-expression levels of two urea cycle enzymes (carbamoyl phosphate synthetase I [CPSI] and ornithine transcarbamylase [OTC]) were measured beginning with stage-47 Xenopus tadpoles at 5 days post-fertilization (dpf), between the onset of feeding (stage 45, 4 dpf) and metamorphosis (stage 55, 32 dpf). CPSI and OTC expression levels increased significantly from stage 49 (12 dpf). Urea excretion was also detected at stage 47. A transient corticosterone surge peaking at stage 48 was previously reported, supporting the hypothesis that corticosterone can induce CPSI expression in tadpoles, as found in adult frogs and mammals. Stage-46 tadpoles were exposed to a synthetic glucocorticoid, dexamethasone (Dex, 10-500 nM) for 3 days. CPSI mRNA expression was significantly higher in tadpoles exposed to Dex than in tadpoles exposed to the vehicle control. Furthermore, glucocorticoid receptor mRNA expression increased during the pre-metamorphic period. In addition to CPSI and OTC mRNA upregulation, the expression levels of three gluconeogenic enzyme genes (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1) increased with the onset of urea synthesis and excretion. These results suggest that simultaneous induction of the urea cycle and gluconeogenic enzymes coincided with a corticosterone surge occurring prior to metamorphosis. These metabolic changes preceding metamorphosis may be closely related to the onset of feeding and nutrient accumulation required for metamorphosis.


Assuntos
Corticosterona , Metamorfose Biológica , Animais , Xenopus laevis/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metamorfose Biológica/genética , Larva/metabolismo , Mamíferos/metabolismo
3.
Zoolog Sci ; 40(1): 1-6, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744703

RESUMO

Psychophysiological studies in vertebrates have focused on taxes as indicators of behavioral change. Actually, a considerable number of studies about anxiety-like and anti-anxiety-like behaviors involving geotaxis, scototaxis, and thigmotaxis have been conducted on fish. However, few analyses considering these behaviors based on taxes in fish have been conducted. Here, using goldfish, we measured the time spent in the bright or dark area of a horizontally long rectangular tank (HLRT), in the upper or lower area of a vertically long rectangular tank (VLRT), and in the central or edge area of a circular tank (CT), respectively, for the first 30 min and the last 30 min in a 3-h period after fish had been introduced to tanks. Dark, lower, and edge preference behaviors were observed for the first 30 min in all tanks. While dark and edge preference behaviors were maintained even for the last 30 min, the lower preference was lost. Swimming distance and the number of area crossings in each tank were also compared between the first 30 min and the last 30 min. Both decreased significantly or tended to decrease in the last 30 min in the HLRT and the CT, but no change was observed in the VLRT. These results suggest that, in goldfish, preference behavior is stable for a short time, and that environmental habituation may depend on the shape of the tank and the elapsed time.


Assuntos
Ansiedade , Carpa Dourada , Animais , Carpa Dourada/fisiologia , Atividade Motora/fisiologia , Locomoção , Impostos
4.
Gen Comp Endocrinol ; 336: 114257, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868365

RESUMO

Vertebrate neurohypophysial hormones, i.e., vasopressin- and oxytocin-family peptides, exert versatile physiological actions via distinct G protein-coupled receptors. The neurohypophysial hormone receptor (NHR) family was classically categorized into four subtypes (V1aR, V1bR, V2R and OTR), while recent studies have identified seven subtypes (V1aR, V1bR, V2aR, V2bR, V2cR, V2dR and OTR; V2aR corresponds to the conventional V2R). The vertebrate NHR family were diversified via multiple gene duplication events at different scales. Despite intensive research effort in non-osteichthyes vertebrates such as cartilaginous fish and lamprey, the molecular phylogeny of the NHR family has not been fully understood. In the present study, we focused on the inshore hagfish (Eptatretus burgeri), another group of cyclostomes, and Arctic lamprey (Lethenteron camtschaticum) for comparison. Two putative NHR homologs, which were previously identified only in silico, were cloned from the hagfish and designated as ebV1R and ebV2R. In vitro, ebV1R, as well as two out of five Arctic lamprey NHRs, increased intracellular Ca2+ in response to exogenous neurohypophysial hormones. None of the examined cyclostome NHRs altered intracellular cAMP levels. Transcripts of ebV1R were detected in multiple tissues including the brain and gill, with intense hybridization signals in the hypothalamus and adenohypophysis, while ebV2R was predominantly expressed in the systemic heart. Similarly, Arctic lamprey NHRs showed distinct expression patterns, underscoring the multifunctionality of VT in the cyclostomes as in the gnathostomes. These results and exhaustive gene synteny comparisons provide new insights into the molecular and functional evolution of the neurohypophysial hormone system in vertebrates.


Assuntos
Feiticeiras (Peixe) , Hormônios Neuro-Hipofisários , Animais , Peixes , Feiticeiras (Peixe)/classificação , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética
5.
Gen Comp Endocrinol ; 299: 113586, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32828811

RESUMO

Urotensin II (UII) is involved, via the UII receptor (UTR), in many physiological and pathological processes, including vasoconstriction, locomotion, osmoregulation, immune response, and metabolic syndrome. In silico studies have revealed the presence of four or five distinct UTR (UTR1-UTR5) gene sequences in nonmammalian vertebrates. However, the functionality of these receptor subtypes and their associations to signaling pathways are unclear. In this study, full-length cDNAs encoding four distinct UTR subtypes (UTR1, UTR3, UTR4, and UTR5) were isolated from the western clawed frog (Xenopus tropicalis). In functional analyses, homologous Xenopus UII stimulation of cells expressing UTR1 or UTR5 induced intracellular calcoum mobilization and phosphorylation of extracellular signal-regulated kinase 1/2. Cells expressing UTR3 or UTR4 did not show this response. Furthermore, UII induced the phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) through the UII-UTR1/5 system. However, intracellular cAMP accumulation was not observed, suggesting that UII-induced CREB phosphorylation is caused by a signaling pathway different from that involving Gs protein. In contrast, the administration of UII to cells increased the phosphorylation of guanine nucleotide exchange factor-H1 (GEF-H1) and myosin light chain 2 (MLC2) in all UTR subtypes. These results define four distinct UTR functional subtypes and are consistent with the molecular evolution of UTR subtypes in vertebrates. Further understanding of signaling properties associated with UTR subtypes may help in clarifying the functional roles associated with UII-UTR interactions in nonmammalian vertebrates.


Assuntos
Regulação da Expressão Gênica/genética , Urotensinas/metabolismo , Animais , Anuros , Transdução de Sinais
6.
Cell Tissue Res ; 362(3): 677-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183720

RESUMO

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.


Assuntos
Peixe Elétrico/anatomia & histologia , Peixe Elétrico/metabolismo , Túbulos Renais Coletores/anatomia & histologia , Túbulos Renais Coletores/metabolismo , Animais , Clonagem Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Modelos Biológicos , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Gen Comp Endocrinol ; 216: 54-63, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25907658

RESUMO

Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1ß, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.


Assuntos
Movimento Celular/genética , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Urotensinas/metabolismo , Xenopus laevis/metabolismo , Animais , Células Cultivadas , Interleucina-1beta/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Urotensinas/genética , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
8.
Artigo em Inglês | MEDLINE | ID: mdl-25541184

RESUMO

The epithelial sodium channel (ENaC) is a sodium (Na(+))-selective aldosterone-stimulated ion channel involved in Na(+) transport homeostasis of tetrapods. We examined full-length cDNA sequences and tissue distributions of ENaCα, ENaCß, and ENaCγ subunits in the African lungfish Protopterus annectens. Protopterus ENaC (pENaC) comprises 3 subunits: pENaCα, pENaCß, and pENaCγ. pENaCα, pENaCß, and pENaCγ subunits are closely related to α, ß, and γ subunits of the Australian lungfish Neoceratodus forsteri ENaC (nENaC), respectively. Three ENaC subunit mRNAs were highly expressed in the gills and moderately expressed in the kidney and rectum of P. annectens. During estivation for 2-4weeks and 2-3months, plasma Na(+) concentration was relatively stable, but plasma urea concentration significantly increased in comparison with the control fish kept in a freshwater environment. Plasma aldosterone concentration and mRNA expression of the ENaCα subunit gradually and significantly decreased in the gills and kidney after 2months of estivation. Thus, aldosterone-dependent Na(+) absorption via ENaC probably exists in the epithelial cells of osmoregulatory organs of lungfish kept in fresh water, whereas plasma Na(+) concentration may be maintained by a mechanism independent of aldosterone-ENaC axis during estivation in lungfish.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Peixes/fisiologia , Aldosterona/sangue , Sequência de Aminoácidos , Animais , Peso Corporal , Clonagem Molecular , DNA Complementar , Secas , Canais Epiteliais de Sódio/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Água Doce , Regulação da Expressão Gênica , Dados de Sequência Molecular , Osmorregulação , Filogenia , Subunidades Proteicas , Sódio/sangue
9.
Horm Behav ; 66(2): 317-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937437

RESUMO

Orexin acts as an orexigenic factor for the regulation of appetite and rhythmicity in rodents. In goldfish, intracerebroventricular (ICV) administration of orexin A has been shown to affect not only food intake, but also locomotor activity. However, as there is still no information regarding the effect of orexin A on emotional behavior in goldfish, we investigated the effect of orexin A on psychomotor activity in this species. Intracerebroventricular administration of synthetic orexin A at 2 and 4pmol/g body weight (BW) enhanced locomotor activity, and this enhancement by orexin A at 4pmol/g BW was attenuated by treatment with the orexin receptor 1 antagonist, SB334867, at 10pmol/g BW. Since intact goldfish prefer a black to a white background area, or the lower to the upper area of a tank, we used two types of preference tests (black/white and upper/lower tests) for measuring anxiety-like behavior in goldfish. Intracerebroventricular administration of orexin A at 4pmol/g BW shortened the time spent in the white background area, and increased the time taken to move from the lower to the upper area. This action of orexin A mimicked that of the central-type benzodiazepine receptor inverse agonist, FG-7142 (an anxiogenic agent), at 4pmol/g BW. The anxiogenic-like effect of orexin A was abolished by treatment with SB334867 at 10pmol/g BW. These results indicate that orexin A potently affects psychomotor activity in goldfish.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/psicologia , Carpa Dourada/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Atividade Motora/efeitos dos fármacos , Neuropeptídeos/farmacologia , Animais , Benzoxazóis/farmacologia , Carbolinas/farmacologia , Diazepam/farmacologia , Emoções/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Naftiridinas , Neuropeptídeos/antagonistas & inibidores , Orexinas , Ureia/análogos & derivados , Ureia/farmacologia
10.
Gen Comp Endocrinol ; 209: 106-17, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25093625

RESUMO

We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.


Assuntos
Peixes/metabolismo , Receptores de Grelina/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Peixes/genética , Expressão Gênica , Células HEK293 , Humanos , Dados de Sequência Molecular , Filogenia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Grelina/classificação , Receptores de Grelina/genética , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
11.
Peptides ; 178: 171239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723948

RESUMO

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Assuntos
Receptores de Vasopressinas , Transdução de Sinais , Vasotocina , Animais , Vasotocina/farmacologia , Vasotocina/metabolismo , Receptores de Vasopressinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Takifugu/metabolismo , Injeções Intraperitoneais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Ansiedade/metabolismo , Ansiedade/induzido quimicamente , Telencéfalo/metabolismo , Telencéfalo/efeitos dos fármacos
12.
Gen Comp Endocrinol ; 185: 44-56, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23399967

RESUMO

Urotensin II (UII) and UII-related peptide (URP) exhibit diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response through UII receptor (UTR), which is expressed in the central nervous system and peripheral tissues of fish and mammals. In amphibians, only UII has been identified. As the first step toward elucidating the actions of UII and URP in amphibians, we cloned and characterized URP and UTR from the African clawed frog Xenopus laevis. Functional analysis showed that treatment of UII or URP with Chinese hamster ovary cells transfected with the cloned receptor increased the intracellular calcium concentration in a concentration-dependent manner, whereas the administration of the UTR antagonist urantide inhibited UII- or URP-induced Ca(2+) mobilization. An immunohistochemical study showed that UTR was expressed in the splenocytes and leukocytes isolated from peripheral blood, suggesting that UII and URP are involved in the regulation of the immune system. UTR was also localized in the apical membrane of the distal tubule of the kidney and in the transitional epithelial cells of the urinary bladder. This result supports the view that the UII/URP-UTR system plays an important role in osmoregulation of amphibians. Interestingly, immunopositive labeling for UTR was first detected in the chondrocytes of various hyaline cartilages (the lung septa, interphalangeal joint and sternum). The expression of UTR was also observed in the costal cartilage, tracheal cartilages, and xiphoid process of the rat. These novel findings probably suggest that UII and URP mediate the formation of the cartilaginous matrix.


Assuntos
Condrócitos/metabolismo , Hormônios Peptídicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Urotensinas/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cálcio/metabolismo , Cartilagem/metabolismo , Cricetinae , Cricetulus , Feminino , Hialina/metabolismo , Masculino , Fragmentos de Peptídeos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Alinhamento de Sequência , Distribuição Tecidual , Urotensinas/farmacologia
13.
Proc Biol Sci ; 279(1748): 4795-802, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23055064

RESUMO

Epithelial sodium channel (ENaC) is a Na(+)-selective, aldosterone-stimulated ion channel involved in sodium transport homeostasis. ENaC is rate-limiting for Na(+) absorption in the epithelia of osmoregulatory organs of tetrapods. Although the ENaC/degenerin gene family is proposed to be present in metazoans, no orthologues or paralogues for ENaC have been found in the genome databases of teleosts. We studied full-length cDNA cloning and tissue distributions of ENaCα, ß and γ subunits in the Australian lungfish, Neoceratodus forsteri, which is the closest living relative of tetrapods. Neoceratodus ENaC (nENaC) comprised three subunits: nENaCα, ß and γ proteins. The nENaCα, ß and γ subunits are closely related to amphibian ENaCα, ß and γ subunits, respectively. Three ENaC subunit mRNAs were highly expressed in the gills, kidney and rectum. Amiloride-sensitive sodium current was recorded from Xenopus oocytes injected with the nENaCαßγ subunit complementary RNAs under a two-electrode voltage clamp. nENaCα immunoreactivity was observed in the apical cell membrane of the gills, kidney and rectum. Thus, nENaC may play a role in regulating sodium transport of the lungfish, which has a renin-angiotensin-aldosterone system. This is interesting because there may have been an ENaC sodium absorption system controlled by aldosterone before the conquest of land by vertebrates.


Assuntos
Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Peixes/fisiologia , Sequência de Aminoácidos , Animais , Austrália , Clonagem Molecular , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica , Brânquias/metabolismo , Rim/metabolismo , Dados de Sequência Molecular , Oócitos/fisiologia , Filogenia , Subunidades Proteicas , Reto/metabolismo , Sistema Renina-Angiotensina/fisiologia , Xenopus
14.
Gen Comp Endocrinol ; 178(3): 519-28, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22809669

RESUMO

The neurohypophysial peptides of the vasopressin (VP) and oxytocin (OT) families regulate salt and water homeostasis and reproduction through distinct G protein-coupled receptors. The current thinking is that there are four neurohypophysial hormone receptors (V1aR, V1bR, V2R, and OTR) in vertebrates, and their evolutionary history is still debated. We report the identification of a fifth neurohypophysial hormone receptor (V2bR) from the holocephalan elephant fish. This receptor is similar to conventional V2R (V2aR) in sequence, but induced Ca(2+) signaling in response to vasotocin (VT), the non-mammalian VP ortholog; such signaling is typical of V1-type receptors. In addition, V1aR, V1bR and OTR were also isolated from the elephant fish. Further screening revealed that orthologous V2bRs are widely distributed throughout the jawed vertebrates, and that the V2bR family is subdivided into two subfamilies: the fish specific type-1, and a type-2 that is characteristically found in tetrapods. Analysis suggested that the mammalian V2bR may have lost its function. Based on molecular phylogenetic, synteny and functional analyses, we propose a new evolutionary history for the neurohypophysial hormone receptors in vertebrates as follows: the first duplication generated V1aR/V1bR/OTR and V2aR/V2bR lineages; after divergence from the V2bR lineage, the V2aRs evolved to use cAMP as a second messenger, while the V2bRs retained the original Ca(2+) signaling system. Future studies on the role of V2bR in the brain, heart, kidney and reproductive organs, in which it is highly expressed, will open a new research field in VP/VT physiology and evolution.


Assuntos
Hormônios Neuro-Hipofisários/metabolismo , Animais , Evolução Molecular , Feminino , Peixes , Masculino , Filogenia , Hormônios Neuro-Hipofisários/genética , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Vasopressinas/classificação , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/metabolismo , Sintenia , Vasotocina/metabolismo
15.
Peptides ; 156: 170846, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35905944

RESUMO

Neuromedin U (NMU) is a multifunctional neuropeptide implicated in regulation of smooth muscle contraction in the circulatory and digestive systems, energy homeostasis and the stress response, but especially food intake in vertebrates. Recent studies have indicated the possible involvement of NMU in the regulation of psychomotor activity in rodents. We have identified four cDNAs encoding three putative NMU variants (NMU-21, -25 and -38) from the goldfish brain and intestine. Recently, we have also purified these NMUs and the truncated C-terminal form NMU-9 from these tissues, and demonstrated their anorexigenic action in goldfish. However, there is no information on the brain localization of NMU-like immunoreactivity and the psychophysiological roles of NMU in fish. Here, we investigated the brain distribution of NMU-like immunoreactivity and found that it was localized throughout the fore- and mid-brains. We subsequently examined the effect of intracerebroventricular (ICV) administration of NMU-21, which is abundant only in the brain on psychomotor activity in goldfish. As goldfish prefer the lower to the upper area of a tank, we developed an upper/lower area preference test in a tank for evaluating the psychomotor activity of goldfish using a personal tablet device without an automatic behavior-tracking device. ICV administration of NMU-21 at 10 pmol g-1 body weight (BW) prolonged the time spent in the upper area of the tank, and this action mimicked that of ICV administration of the central-type benzodiazepine receptor (CBR) agonist tofisopam at 100 pmol g-1 BW. These results suggest that NMU-21 potently induces anxiolytic-like action in the goldfish brain.


Assuntos
Ansiolíticos , Neuropeptídeos , Hormônios Peptídicos , Animais , Encéfalo/metabolismo , Carpa Dourada/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Receptores de GABA-A
16.
Genes Brain Behav ; 21(2): e12780, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854547

RESUMO

The Bengalese finch was domesticated more than 250 years ago from the wild white-rumped munia (WRM). Similar to other domesticated species, Bengalese finches show a reduced fear response and have lower corticosterone levels, compared to WRMs. Bengalese finches and munias also have different song types. Since oxytocin (OT) has been found to be involved in stress coping and auditory processing, we tested whether the OT sequence and brain expression pattern and content differ in wild munias and domesticated Bengalese finches. We sequenced the OT from 10 wild munias and 11 Bengalese finches and identified intra-strain variability in both the untranslated and protein-coding regions of the sequence, with all the latter giving rise to synonymous mutations. Several of these changes fall in specific transcription factor-binding sites, and show either a conserved or a relaxed evolutionary trend in the avian lineage, and in vertebrates in general. Although in situ hybridization in several hypothalamic nuclei did not reveal significant differences in the number of cells expressing OT between the two strains, real-time quantitative PCR showed a significantly higher OT mRNA expression in the cerebrum of the Bengalese finches relative to munias, but a significantly lower expression in their diencephalon. Our study thus points to a brain region-specific pattern of neurochemical expression in domesticated and wild avian strains, which could be linked to domestication and the behavioral changes associated with it.


Assuntos
Tentilhões , Animais , Encéfalo , Tentilhões/genética , Expressão Gênica , Ocitocina/genética , Vocalização Animal/fisiologia
17.
J Exp Zool B Mol Dev Evol ; 316B(2): 135-45, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21328529

RESUMO

A full-length cDNA cloning and tissue distribution of epithelial sodium channel (ENaC) protein were studied during ontogeny by immunohistochemistry in the external gills, and the kidney, pronephros and mesonephros, of the Japanese black salamander, Hynobius nigrescens (Family Hynobiidae; a primitive caudate species). The amino acid sequence of Hynobius ENaCα is 64 and 63% identical to Bufo ENaCα and Rat ENaCα, respectively. In aquatic larva salamander at the digit differentiation stage, Hynobius ENaCα mRNA was expressed in the external gills and pronephros. In the adult, the mRNA was expressed in the skin and the mesonephros. In the larvae, juvenile, and adult specimens, Hynobius ENaCα immunoreactivity was observed at the apical cell membrane of the external gills, late parts of the distal tubules, and mesonephric duct in the kidney. Colocalization of the apical Hynobius ENaCα and the basolateral Na(+) ,K(+) -ATPase was observed in the tubular cells of pronephros and mesonephros. These results suggest that Hynobius ENaCα plays an important role in the regulation of sodium transport in the external gills and pronephros of aquatic larvae, and in the skin and mesonephros of terrestrial adult. This is the first study to indicate ENaC expression during ontogeny in amphibians. Since no orthologs or paralogs for ENaC have been found, so far, in databases of the genomes of teleosts, it is assumed that ENaC might have played a role in terrestriality during the evolution of early tetrapods, the origin of lissamphibians.


Assuntos
Canais Epiteliais de Sódio/biossíntese , Brânquias/fisiologia , Rim/fisiologia , Urodelos/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Canais Epiteliais de Sódio/genética , Imuno-Histoquímica , Transporte de Íons/fisiologia , Dados de Sequência Molecular , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
18.
Zoolog Sci ; 28(12): 882-90, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22132785

RESUMO

Neuropeptide tyrosine (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in rodents. However, the involvement of NPY in feeding behavior has not well been studied in fish. Therefore, we investigated the role of NPY in food intake using a tiger puffer (Takifugu rubripes) model. We observed the distribution of NPY-like immunoreactivity in the brain. Neuronal cell bodies containing NPY were located in the telencephalon, hypothalamus, mesencephalon, and medulla oblongata, and their nerve fibers were also found throughout the brain. We cloned two cDNAs, encoding NPYa and NPYb orthologs, respectively, from the brain, and also confirmed two genes encoding these NPYs in the Takifugu genome database. We examined the distribution of these transcripts in the brain using real-time PCR. Levels of NPYa mRNA in the telencephalon, mesencephalon and hypothalamus were much higher than in the medulla oblongata and cerebellum, whereas levels of NPYb mRNA in the medulla oblongata were higher than in other regions. We also examined prandial effects on the expression level of these transcripts in the telencephalon and hypothalamus. NPYa mRNA levels in the hypothalamus, but not in the telencephalon, obtained from fish fasted for one week were higher than those in fish that had been fed normally. The level was decreased at 2 h after feeding. Levels of NPYb mRNA were not affected by prandial conditions. These results suggest that NPY is present throughout the brain, and that NPYa, but not NPYb, in the hypothalamus is involved in the feeding regulation in the tiger puffer.


Assuntos
Clonagem Molecular , Regulação da Expressão Gênica/fisiologia , Neuropeptídeo Y/metabolismo , RNA Mensageiro/metabolismo , Takifugu/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Alimentos , Dados de Sequência Molecular , Neuropeptídeo Y/genética , Filogenia , Transporte Proteico , RNA Mensageiro/genética , Takifugu/genética
19.
Peptides ; 145: 170623, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375685

RESUMO

α-Melanocyte-stimulating hormone (α-MSH) is a body pigmentation-regulating hormone secreted from the intermediate lobe of the pituitary in vertebrates. It is also produced in the brain, and acts as an anorexigenic neuropeptide involved in feeding regulation. In rodents, intracerebroventricular (ICV) administration of α-MSH has been shown to affect not only feeding behavior, but also psychomotor activity. However, there is still no information regarding the psychophysiological effects of α-MSH on behavior in fish. Therefore, we examined the effect of synthetic α-MSH on psychomotor activity in goldfish. Since this species prefers the edge to the central area of a tank, we used this as a preference test for assessing psychomotor activity. When α-MSH was administered ICV at 1 and 10 pmol g-1 body weight (BW), the time spent in the edge area of a tank was prolonged at 10 pmol g-1 BW. However, α-MSH at these doses did not affect locomotor activity. The action of α-MSH mimicked those of FG-7142 (a central-type benzodiazepine receptor (CBR) inverse agonist with an anxiogenic effect) at 10 pmol g-1 BW and melanotan II (a melanocortin 4 receptor (MC4R) agonist) at 50 pmol g-1 BW, whereas ICV administration of tofisopam (a CBR agonist with an anxiolytic effect) at 10 pmol g-1 BW prolonged the time spent in the central area. The anxiogenic-like effect of α-MSH was abolished by treatment with the MC4R antagonist HS024 at 50 pmol g-1 BW. These data indicate that α-MSH affects psychomotor activity in goldfish, and exerts an anxiogenic-like effect via the MC4R-signaling pathway.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Carpa Dourada , alfa-MSH/administração & dosagem , Animais , Comportamento Animal/fisiologia , Benzodiazepinas/administração & dosagem , Encéfalo/efeitos dos fármacos , Carbolinas/administração & dosagem , Feminino , Injeções Intraventriculares , Locomoção/efeitos dos fármacos , Masculino , Peptídeos Cíclicos/administração & dosagem , Resposta Táctica/efeitos dos fármacos , alfa-MSH/análogos & derivados
20.
Horm Behav ; 58(3): 457-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20483358

RESUMO

Angiotensin II (Ang II) stimulates oral water intake by causing thirst in all terrestrial vertebrates except anurans. Anuran amphibians do not drink orally but absorb water osmotically through ventral skin. In this study, we examined the role of Ang II on the regulation of water-absorption behavior in the Japanese tree frog (Hyla japonica). In fully hydrated frogs, intracerebroventricular (ICV) and intralymphatic sac (ILS) injection of Ang II significantly extended the residence time of water in a dose-dependent manner. Ang II-dependent water uptake was inhibited by ICV pretreatment with an angiotensin II type-1 (AT(1)) receptor antagonist but not a type-2 (AT(2)) receptor antagonist. These results suggest that Ang II stimulates water-absorption behavior in the tree frog via an AT(1)-like but not AT(2)-like receptor. We then cloned and characterized cDNA of the tree frog AT(1) receptor from the brain. The tree frog AT(1) receptor cDNA encodes a 361 amino acid residue protein, which is 87% identical to the toad (Bufo marinus) AT(1) receptor and exhibits the functional characteristics of an Ang II receptor. AT(1) receptor mRNAs were found to be present in a number of tissues including brain (especially in the diencephalon), lung, large intestine, kidney and ventral pelvic skin. When tree frogs were exposed to dehydrating conditions, AT(1) receptor mRNA significantly increased in the diencephalon and the rhombencephalon. These data suggest that central Ang II may control water intake behavior via an AT(1) receptor on the diencephalon and rhombencephalon in anuran amphibians and may have implications for water consumption in vertebrates.


Assuntos
Angiotensina II/fisiologia , Anuros/fisiologia , Ingestão de Líquidos , Receptor Tipo 1 de Angiotensina/fisiologia , Água/metabolismo , Sequência de Aminoácidos , Angiotensina II/farmacologia , Animais , Sequência de Bases , Encéfalo/fisiologia , Feminino , Intestino Grosso/fisiologia , Pulmão/fisiologia , Masculino , Dados de Sequência Molecular , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Fenômenos Fisiológicos da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA