RESUMO
Microglia are resident immune cells of the central nervous system and play critical roles during the development, homeostasis, and pathologies of the brain. Originated from yolk sac erythromyeloid progenitors, microglia immigrate into the embryonic brain parenchyma to undergo final postnatal differentiation and maturation driven by distinct chemokines, cytokines, and growth factors. Among them, TGFß1 is an important regulator of microglial functions, mediating homeostasis, anti-inflammation, and triggering the expression of microglial homeostatic signature genes. Since microglia studies are mainly based on rodent cells and the isolation of homeostatic microglia from human tissue is challenging, human-induced pluripotent stem cells have been successfully differentiated into microglia-like cells recently. However, employed differentiation protocols strongly vary regarding used cytokines and growth factors, culture conditions, time span, and cell yield. Moreover, the incomplete differentiation of human microglia can hamper the similarity to primary human microglia and dramatically influence the outcome of follow-up studies with these differentiated cells. This review summarizes the current knowledge of the molecular mechanisms driving rodent microglia differentiation in vivo, further compares published differentiation protocols, and highlights the potential of TGFß as an essential maturation factor.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Animais , Junções Célula-Matriz/metabolismo , Humanos , Microglia/metabolismo , Modelos Biológicos , Fator de Crescimento Transformador beta/metabolismoRESUMO
Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.
Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Presenilina-1/metabolismo , Tiazóis/farmacologia , Adulto , Animais , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Éxons/efeitos dos fármacos , Éxons/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Distribuição AleatóriaRESUMO
Epidemiological studies reveal that air pollution exposure may exacerbate neurodegeneration. Ultrafine particles (UFPs) are pollutants that remain unregulated in ambient air by environmental agencies. Due to their small size (<100 nm), UFPs have the most potential to cross the bodily barriers and thus impact the brain. However, little information exists about how UFPs affect brain function. Alzheimer's disease (AD) is the most common form of dementia, which has been linked to air pollutant exposure, yet limited information is available on the mechanistic connection between them. This study aims to decipher the effects of UFPs in the brain and periphery using the 5xFAD mouse model of AD. In our study design, AD mice and their wildtype littermates were subjected to 2-weeks inhalation exposure of UFPs in a whole-body chamber. That subacute exposure did not affect the amyloid-beta accumulation. However, when multiple cytokines were analyzed, we found increased levels of proinflammatory cytokines in the brain and periphery, with a predominant alteration of interferon-gamma in response to UFP exposure in both genotypes. Following exposure, mitochondrial superoxide dismutase was significantly upregulated only in the 5xFAD hippocampi, depicting oxidative stress induction in the exposed AD mouse group. These data demonstrate that short-term exposure to inhaled UFPs induces inflammation without affecting amyloid-beta load. This study provides a better understanding of adverse effects caused by short-term UFP exposure in the brain and periphery, also in the context of AD.
Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/toxicidade , Peptídeos beta-Amiloides , Animais , Inflamação/induzido quimicamente , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Camundongos , Tamanho da Partícula , Material Particulado/toxicidadeRESUMO
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Assuntos
Encéfalo/fisiologia , Modelos Biológicos , Células-Tronco Pluripotentes/metabolismo , Humanos , Microeletrodos , Neurônios/fisiologia , Organoides/fisiologiaRESUMO
Human cerebral organoids, derived from induced pluripotent stem cells, offer a unique in vitro research window to the development of the cerebral cortex. However, a key player in the developing brain, the microglia, do not natively emerge in cerebral organoids. Here we show that erythromyeloid progenitors (EMPs), differentiated from induced pluripotent stem cells, migrate to cerebral organoids, and mature into microglia-like cells and interact with synaptic material. Patch-clamp electrophysiological recordings show that the microglia-like population supported the emergence of more mature and diversified neuronal phenotypes displaying repetitive firing of action potentials, low-threshold spikes and synaptic activity, while multielectrode array recordings revealed spontaneous bursting activity and increased power of gamma-band oscillations upon pharmacological challenge with NMDA. To conclude, microglia-like cells within the organoids promote neuronal and network maturation and recapitulate some aspects of microglia-neuron co-development in vivo, indicating that cerebral organoids could be a useful biorealistic human in vitro platform for studying microglia-neuron interactions.
Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Organoides/metabolismo , Adolescente , Adulto , Idoso , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Every second we inhale a danger in the air; many particles in the atmosphere can influence our lives. Outdoor air pollution, especially particulate matter is the largest environmental risk factor and has been associated with many cardiovascular and lung diseases. Importantly, air pollution has recently been discovered to also impact the brain. Here, we review the effects of air pollution on glial cells of the brain, astrocytes and microglia, and the tightly controlled interplay between these cell types. We focus on how traffic related air pollutants which include both gaseous and particulate emissions and their secondary products influence the intercellular communication of microglia and astrocytes. Finally, we place these air pollution and glial interactions in a larger context by discussing their impact on neurodegeneration.
Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Astrócitos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Animais , Astrócitos/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismoRESUMO
Here we elucidate the effect of Alzheimer disease (AD)-predisposing genetic backgrounds, APOE4, PSEN1ΔE9, and APPswe, on functionality of human microglia-like cells (iMGLs). We present a physiologically relevant high-yield protocol for producing iMGLs from induced pluripotent stem cells. Differentiation is directed with small molecules through primitive erythromyeloid progenitors to re-create microglial ontogeny from yolk sac. The iMGLs express microglial signature genes and respond to ADP with intracellular Ca2+ release distinguishing them from macrophages. Using 16 iPSC lines from healthy donors, AD patients and isogenic controls, we reveal that the APOE4 genotype has a profound impact on several aspects of microglial functionality, whereas PSEN1ΔE9 and APPswe mutations trigger minor alterations. The APOE4 genotype impairs phagocytosis, migration, and metabolic activity of iMGLs but exacerbates their cytokine secretion. This indicates that APOE4 iMGLs are fundamentally unable to mount normal microglial functionality in AD.
Assuntos
Precursor de Proteína beta-Amiloide/genética , Apolipoproteína E4/genética , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Fenótipo , Presenilina-1/genética , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteína E4/metabolismo , Cálcio/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , Hematopoese , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Mediadores da Inflamação/metabolismo , Microglia/citologia , Mutação , Fagocitose , Presenilina-1/metabolismo , ProteóliseRESUMO
Neural stem/progenitor cells (NPCs) generate new neurons in the brain throughout an individual's lifetime in an intricate process called neurogenesis. Neurogenic alterations are a common feature of several adult-onset neurodegenerative diseases. The neuronal ceroid lipofuscinoses (NCLs) are the most common group of inherited neurodegenerative diseases that mainly affect children. Pathological features of the NCLs include accumulation of lysosomal storage material, neuroinflammation and neuronal degeneration, yet the exact cause of this group of diseases remains poorly understood. The function of the CLN5 protein, causative of the CLN5 disease form of NCL, is unknown. In the present study, we sought to examine neurogenesis in the neurodegenerative disorder caused by loss of Cln5 Our findings demonstrate a newly identified crucial role for CLN5 in neurogenesis. We report for the first time that neurogenesis is increased in Cln5-deficient mice, which model the childhood neurodegenerative disorder caused by loss of Cln5 Our results demonstrate that, in Cln5 deficiency, proliferation of NPCs is increased, NPC migration is reduced and NPC differentiation towards the neuronal lineage is increased concomitantly with functional alterations in the NPCs. Moreover, the observed impairment in neurogenesis is correlated with increased expression of the pro-inflammatory cytokine IL-1ß. A full understanding of the pathological mechanisms that lead to disease and the function of the NCL proteins are critical for designing effective therapeutic approaches for this devastating neurodegenerative disorder.
Assuntos
Hipocampo/metabolismo , Hipocampo/patologia , Glicoproteínas de Membrana/deficiência , Neurogênese , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Modelos Animais de Doenças , Humanos , Interleucina-1beta/farmacologia , Proteínas de Membrana Lisossomal , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Background: Accumulation of amyloid ß (Aß) is one of the main hallmarks of Alzheimer's disease (AD). The enhancement of Aß clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aß in monocytic cells are poorly known. We aimed to study whether different forms of Aß induce inflammatory responses in monocytic phagocytes and how Aß may affect monocytic cell survival and function to retain phagocytosis in Aß-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aß42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aß deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aß plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aß induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aß was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aß-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aß species nor native Aß deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aß and exhibited phagocytic activity towards native fibrillar Aß deposits and congophilic Aß plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aß and inflammatory stimulus LPS. Even though Aß species cause specific responses in calcium signaling, they completely lack the ability to induce pro-inflammatory phenotype of monocytic cells. Monocytes retain their viability and function in Aß-laden brain.
RESUMO
Transient forebrain ischemia induces delayed death of the hippocampal pyramidal neurons, particularly in the CA2 and medial CA1 area. Early pharmacological inhibition of inflammatory response can ameliorate neuronal death, but it also inhibits processes leading to tissue regeneration. Therefore, research efforts are now directed to modulation of post-ischemic inflammation, with the aim to promote beneficial effects of inflammation and limit adverse effects. Transcription factor NF-κB plays a key role in the inflammation and cell survival/apoptosis pathways. In the brain, NF-κB is predominantly found in the form of a heterodimer of p65 (RelA) and p50 subunit, where p65 has a transactivation domain while p50 is chiefly involved in DNA binding. In this study, we subjected middle-aged Nfkb1 knockout mice (lacking p50 subunit) and wild-type controls of both sexs to 17 min of transient forebrain ischemia and assessed mouse performance in a panel of behavioral tests after two weeks of post-operative recovery. We found that ischemia failed to induce clear memory and motor deficits, but affected spontaneous locomotion in genotype- and sex-specific way. We also show that both the lack of the NF-κB p50 subunit and female sex independently protected CA2 hippocampal neurons from ischemia-induced cell death. Additionally, the NF-κB p50 subunit deficiency significantly reduced ischemia-induced microgliosis, astrogliosis, and neurogenesis. Lower levels of hippocampal microgliosis significantly correlated with faster spatial learning. We conclude that NF-κB regulates the outcome of transient forebrain ischemia in middle-aged subjects in a sex-specific way, having an impact not only on neuronal death but also specific inflammatory responses and neurogenesis.