Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Environ Sci Technol ; 56(1): 368-378, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34932318

RESUMO

Soil contaminated with aqueous film-forming foams (AFFFs) containing per- and polyfluoroalkyl substances (PFASs) at firefighting training sites has become a major concern worldwide. To date, most studies have focused on assessing soil-water partitioning behavior of PFASs and the key factors that can affect their sorption, whereas PFASs leaching from contaminated soils have not yet been widely investigated. This study evaluated the leaching and desorption of a wide range of PFASs from twelve contaminated soils using the Australian Standard Leaching Procedure (ASLP), the U.S. EPA Multiple Extraction Procedure (MEP), and Leaching Environmental Assessment Framework (LEAF). All three leaching tests provided a similar assessment of PFAS leaching behavior. Leaching of PFASs from soils was related to C-chain lengths and their functional head groups. While short-chain (CF2 ≤ 6) PFASs were easily desorbed and leached, long-chain PFASs were more difficult to desorb. PFASs with a carboxylate head group were leached more readily and to a greater extent than those with a sulfonate or sulfonamide head group. Leaching of long-chain PFASs was pH-dependent where leaching increased at high pH, while leaching of short-chain PFASs was less sensitive to pH. Comparing different leaching tests showed that the results using the alkaline ASLP were similar to the cumulative MEP data and the former might be more practical for routine use than the MEP. No single soil property was adequately able to describe PFAS leaching from the soils. Overall, the PFAS chemical structure appeared to have a greater effect on PFAS leaching from soil than soil physicochemical properties.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Austrália , Poluição Ambiental , Fluorocarbonos/análise , Solo/química , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 56(14): 10030-10041, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35763608

RESUMO

This study investigated the mobilization of a wide range of per- and polyfluoroalkyl substances (PFASs) present in aqueous film-forming foams (AFFFs) in water-saturated soils through one-dimensional (1-D) column experiments with a view to assessing the feasibility of their remediation by soil desorption and washing. Results indicated that sorption/desorption of most of the shorter-carbon-chain PFASs (C ≤ 6) in soil reached greater than 99% rapidly─after approximately two pore volumes (PVs) and were well predicted by an equilibrium transport model, indicating that they will be readily removed by soil washing technologies. In contrast, the equilibrium model failed to predict the mobilization of longer-chain PFASs (C ≥ 7), indicating the presence of nonequilibrium sorption/desorption (confirmed by a flow interruption experiment). The actual time taken to attain 99% sorption/desorption was up to 5 times longer than predicted by the equilibrium model (e.g., ∼62 PVs versus ∼12 PVs predicted for perfluorooctane sulfonate (PFOS) in loamy sand). The increasing contribution of hydrophobic interactions over the electrostatic interactions is suggested as the main driving factor of the nonequilibrium processes. The inverse linear relationship (R2 = 0.6, p < 0.0001) between the nonequilibrium mass transfer rate coefficient and the Freundlich sorption coefficient could potentially be a useful means for preliminary evaluation of potential nonequilibrium sorption/desorption of PFASs in soils.


Assuntos
Fluorocarbonos , Poluentes do Solo , Poluentes Químicos da Água , Fluorocarbonos/análise , Solo/química , Água , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 54(24): 15883-15892, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33249833

RESUMO

The aim of this study was to assess the soil-water partitioning behavior of a wider range of per- and polyfluoroalkyl substances (PFASs) onto soils covering diverse soil properties. The PFASs studied include perfluoroalkyl carboxylates (PFCAs), perfluoroalkane sulfonates (PFSAs), fluorotelomer sulfonates (FTSs), nonionic perfluoroalkane sulfonamides (FASAs), cyclic PFAS (PFEtCHxS), per- and polyfluoroalkyl ether acids (GenX, ADONA, 9Cl-PF3ONS), and three aqueous film-forming foam (AFFF)-related zwitterionic PFASs (AmPr-FHxSA, TAmPr-FHxSA, 6:2 FTSA-PrB). Soil-water partitioning coefficients (log Kd values) of the PFASs ranged from less than zero to approximately three, were chain-length-dependent, and were significantly linearly related to molecular weight (MW) for PFASs with MW > 350 g/mol (R2 = 0.94, p < 0.0001). Across all soils, the Kd values of all short-chain PFASs (≤5 -CF2- moieties) were similar and varied less (<0.5 log units) compared to long-chain PFASs (>0.5 to 1.5  log units) and zwitterions AmPr- and TAmPr-FHxSA (∼1.5 to 2 log units). Multiple soil properties described sorption of PFASs better than any single property. The effects of soil properties on sorption were different for anionic, nonionic, and zwitterionic PFASs. Solution pH could change both PFAS speciation and soil chemistry affecting surface complexation and electrostatic processes. The Kd values of all PFASs increased when solution pH decreased from approximately eight to three. Short-chain PFASs were less sensitive to solution pH than long-chain PFASs. The results indicate the complex interactions of PFASs with soil surfaces and the need to consider both PFAS type and soil properties to describe mobility in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Concentração de Íons de Hidrogênio , Solo , Água , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 148: 770-780, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29190596

RESUMO

The use of pyrethroid and neonicotinoid insecticides has increased in Australia over the last decade, and as a consequence, increased concentrations of the neonicotinoid insecticide imidacloprid have been measured in Australian rivers. Previous studies have shown that non-target crustaceans, including commercially important species, can be extremely sensitive to these pesticides. Most shrimp farms in Australia are predominantly located adjacent to estuaries so they can obtain their required saline water, which support multiple land uses upstream (e.g. sugar-cane farming, banana farming, beef cattle and urbanisation). Larval and post-larval shrimp may be most susceptible to the impacts of these pesticides because of their high surface area to volume ratio and rapid growth requirements. However, given the uncertainties in the levels of insecticides in farm intake water and regarding the impacts of insecticide exposure on shrimp larvae, the risks that the increased use of new classes of pesticide pose towards survival of post-larval phase shrimp cannot be adequately predicted. To assess the potential for risk, toxicity in 20day past hatch post-larval Black Tiger shrimp (Penaeus monodon) to modern use insecticides, imidacloprid, bifenthin, and fipronil was measured as decreased survival and feeding inhibition. Post-larval phase shrimp were sensitive to fipronil, bifenthrin, and imidacloprid, in that order, at concentrations that were comparable to those that cause mortality other crustaceans. Bifenthrin and imidacloprid exposure reduced the ability of post-larval shrimp to capture live prey at environmentally realistic concentrations. Concentrations of a broad suite of pesticides were also measured in shrimp farm intake waters. Some pesticides were detected in every sample. Most of the pesticides detected were measured below concentrations that are toxic to post-larval shrimp as used in this study, although pesticides exceed guideline values, suggesting the possibility of indirect or mixture-related impacts. However, at two study sites, the concentrations of insecticides were sufficient to cause toxicity in shrimp post larvae, based on the risk assessment undertaken in this study.


Assuntos
Penaeidae/efeitos dos fármacos , Praguicidas/análise , Praguicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Aquicultura , Estuários , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Penaeidae/crescimento & desenvolvimento , Queensland , Rios/química , Água do Mar/química
5.
J Environ Manage ; 174: 7-13, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26989940

RESUMO

The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC.


Assuntos
Filtração/métodos , Hidrocarbonetos/análise , Modelos Teóricos , Nitrificação , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Hidrocarbonetos/química , Poluentes Químicos da Água/química
6.
Environ Sci Technol ; 49(20): 12509-18, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26418514

RESUMO

The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications.


Assuntos
Carbamazepina/farmacocinética , Cucurbita/efeitos dos fármacos , Poluentes do Solo/farmacocinética , Verapamil/farmacocinética , Biomassa , Carbamazepina/toxicidade , Cucurbita/crescimento & desenvolvimento , Cucurbita/metabolismo , Relação Dose-Resposta a Droga , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/análise , Verapamil/toxicidade
7.
Arch Environ Contam Toxicol ; 68(3): 566-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25543151

RESUMO

Perfluoroalkyl substances (PFASs) have received great attention from the public and scientific community due to their potential adverse impacts on the ecosystem and human health. We investigated the occurrence and distribution of 16 PFASs from 2 classes of PFASs-perfluoroalkyl carboxylic acids and perfluoroalkane sulfonic acids-in the archived surface sediments of five major rivers (Yellow River, Hai River, Liao River, Zhujiang River, and Dongjiang River) in northern and southern China. The study was also performed during the wet and dry seasons. Perfluorooctanoic acid and perfluorooctane sulfonic acid were the most frequently detected (detection frequency = 100 and 63 %, respectively) in the sediments of the five rivers; the concentrations ranged from 0.08 to 0.99 ng/g dry weight (dw) and were lower than the limit of detection (

Assuntos
Ácidos Alcanossulfônicos/análise , Caprilatos/análise , Ácidos Decanoicos/análise , Monitoramento Ambiental , Ácidos Graxos/análise , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , China , Sedimentos Geológicos/química , Rios/química
8.
J Environ Sci Health B ; 49(11): 836-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25190558

RESUMO

Indaziflam is a relatively new herbicide for which sorption-desorption information is lacking, and nothing is available on its metabolites. Information is needed on the multiple soil and pesticide characteristics known to influence these processes. For four soils, the order of sorption was indaziflam (N-[1R,2S)-2,3-dihydro-2,6-dimethyl-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 5.9, 1/nf = 0.7, Kfoc = 447; sandy loam: Kf = 3.9, 1/nf = 0.9, Kfoc = 276) > triazine indanone metabolite (N-[(1R,2S)-2,3-dihydro-2,6-dimethyl-3-oxo-1H-inden-1-yl]-6-[(1R)-1-fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 2.1, 1/nf = 0.8, Kfoc = 177; sandy loam: Kf = 1.7, 1/nf = 0.9, Kfoc = 118) > fluoroethyldiaminotriazine metabolite (6-[(1R-1-Fluoroethyl]-1,3,5-triazine-2,4-diamine) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 28; sandy loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22) = indaziflam carboxylic acid metabolite (2S,3R)-3-[[4-amino-6-[(1R)-1-fluoroethyl]-1,3,5-triazin-2-yl]amino]-2,3-dihydro-2-methyl-1H-indene-5-carboxylic acid) (sandy clay loam: Kf = 0.3, 1/nf = 0.9, Kfoc = 22; sandy loam: Kf = 0.5, 1/nf = 0.8, Kfoc = 32). The metabolites being more polar than the parent compound showed lower sorption. Desorption was hysteretic for indaziflam and triazine indanone metabolite, but not for the other two metabolites. Unsaturated transient flow Kd's were lower than batch Kd's for indaziflam, but similar for fluoroethyldiaminotriazine metabolite. Batch Kd's would overpredict potential offsite transport if desorption hysteresis is not taken into account.


Assuntos
Herbicidas/análise , Indenos/análise , Poluentes do Solo/análise , Solo/química , Triazinas/análise , Adsorção , Cinética
9.
Environ Pollut ; 356: 124234, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815892

RESUMO

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)from soils contaminated by aqueous film forming foam (AFFF). Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.


Assuntos
Ácidos Alcanossulfônicos , Carbono , Fluorocarbonos , Poluentes do Solo , Solo , Fluorocarbonos/química , Poluentes do Solo/química , Solo/química , Carbono/química , Ácidos Alcanossulfônicos/química , Concentração de Íons de Hidrogênio , Caprilatos/química , Adsorção , Ácidos Sulfônicos
10.
Environ Monit Assess ; 185(11): 9321-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23729161

RESUMO

The assessment of potential impacts of wastewater effluent discharges in freshwater systems requires an understanding of the likely degrees of dilution and potential zones of influence. In this study, four tracers commonly present in wastewater effluents were monitored to compare their relative effectiveness in determining areas in freshwater systems that are likely to be impacted by effluent discharges. The four tracers selected were the human pharmaceutical carbamazepine, anthropogenic gadolinium, fluorescent-dissolved organic matter (fDOM), and electrical conductivity (EC). The four tracers were monitored longitudinally in two distinct freshwater systems receiving wastewater effluents, where one site had a high level of effluent dilution (effluent <1% of total flow) and the other site had a low level of effluent dilution (effluent ∼50% of total flow). At both sites, the selected tracers exhibited a similar pattern of response intensity downstream of discharge points relative to undiluted wastewater effluent, although a number of anomalies were noted between the tracers. Both EC and fDOM are non-specific to human influences, and both had a high background response, relative to the highly sensitive carbamazepine and anthropogenic gadolinium responses, although the ease of measuring EC and fDOM would make them more adaptable in highly variable systems. However, the greater sensitivity and selectivity of carbamazepine and gadolinium would make their combination with EC and fDOM as tracers of wastewater effluent discharges highly desirable to overcome potential limitations of individual tracers.


Assuntos
Monitoramento Ambiental/métodos , Rios/química , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Águas Residuárias/estatística & dados numéricos
11.
Water Res ; 230: 119528, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587522

RESUMO

Disinfection by-products (DBPs) are formed through the disinfection of water containing precursors such as natural organic matter or anthropogenic compounds (e.g., pharmaceuticals and pesticides). Due to the ever increasing use of plastics, elastomers, and other polymers in our daily lives, polymer-based materials (PBMs) are detected more frequently and at higher concentrations in water and wastewater. The present review provides a comprehensive and systematic analysis of the contribution of PBMs - including elastomers, tire waste, polyelectrolytes, and microplastics - as precursors of DBPs in water and wastewater. Literature shows that the presence of PBMs can lead to the leaching of dissolved organic matter (DOM) and subsequent formation of DBPs upon disinfection in aqueous media. The quantity and type of DBPs formed strongly depends on the type of polymer, its concentration, its age, water salinity, and disinfection conditions such as oxidant dosage, pH, temperature, and contact time. DOM leaching from elastomers and tire waste was shown to form N-nitrosodimethylamine up to concerning levels of 930 ng/L and 466,715 ng/L, respectively upon chemical disinfection under laboratory conditions. Polyelectrolytes can also react with chemical disinfectants to form toxic DBPs. Recent findings indicate trihalomethanes formation potential of plastics can be as high as 15,990 µg/L based on the maximum formation potential under extreme conditions. Our analysis highlights an overlooked contribution of DOM leaching from PBMs as DBP precursors during disinfection of water and wastewater. Further studies need to be conducted to ascertain the extent of this contribution in real water and wastewater treatment plants.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Microplásticos , Plásticos , Polímeros , Águas Residuárias , Polieletrólitos , Halogenação , Desinfetantes/análise , Água/análise , Elastômeros , Poluentes Químicos da Água/química , Trialometanos/análise
12.
Sci Total Environ ; 905: 167188, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734606

RESUMO

Understanding the sorption behavior of per- and poly-fluoroalkyl substances (PFAS) in soils are essential for assessing their mobility and risk in the environment. Heavy metals often coexist with PFAS depending on the source and history of contamination. In this study, we investigated the effect of heavy metal co-contaminants (Pb2+, Cu2+ and Zn2+) on the sorption of 13 anionic PFAS with different perfluorocarbon chain length (C3-C9) in two soils with different properties. Results revealed that Pb2+, Cu2+ and Zn2+ had little effect on the sorption of most short-chain compounds, while the presence of these heavy metals enhanced the sorption of long-chain PFAS in two soils. The distribution coefficients (Kd) of several long-chain PFAS linearly increased with increasing concentrations of heavy metal, especially in the presence of Pb2+ (ΔKd/Δ [Pb2+] > 3 for PFOS and PFNA vs <1 for PFPeS and PFHxS). While several mechanisms may have contributed to the enhancement of sorption of PFAS, the heavy metals most likely contributed through enhanced hydrophobic interactions of PFAS by neutralizing the negative charge of adsorption surfaces in soils and thus making it more favorable for their partitioning onto the solid phase. Moreover, the increase in the concentrations of heavy metals led to a decrease in the pH of the system and promoted sorption of long-chain compounds, especially in soil with lower organic carbon content. Overall, this study provides evidence that the presence of co-existing heavy metal cations in soils can significantly enhance the sorption of long-chain PFAS onto soil, thereby potentially limiting their mobility in the environment.

13.
Environ Pollut ; 323: 121249, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764376

RESUMO

Immobilisation/stabilisation is one of the most developed and studied approaches for treating soils contaminated with per- and poly-fluoroalkyl substances (PFAS). However, its application has been inhibited by insufficient understanding of the effectiveness of added soil sorbents over time. Herein, we present results on the effectiveness of select carbon-based sorbents, over 4 years (longevity) and multiple laboratory leaching conditions (durability). Standard batch leaching tests simulating aggressive, worst-case scenario conditions for leaching (i.e., shaking for 24-48 h at high liquid/solid ratios) were employed to test longevity and durability of stabilisation in clay-loam and sandy-loam soils historically contaminated with PFAS (2 and 14 mg/kg ∑28 PFAS). The different sorbents, which were applied at 1-6% (w/w), reduced leaching of PFAS from the soils to varying degrees. Among the 5 sorbents tested, initial assessments completed 1 week after treatment revealed that 2 powdered activated carbon (PAC) sorbents and 1 biochar were able to reduce leaching of PFAS in the soil by at least 95%. Four years after treatment, the performance of the PAC sorbents did not significantly change, whilst colloidal AC improved and was able to reduce leaching of PFAS by at least 94%. The AC-treated soils also appeared to be durable and achieved at least 95% reduction in PFAS leaching under repetitive leaching events (5 times extraction) and with minimal effect of pH (pH 4-10.5). In contrast, the biochars were affected by aging and were at least 22% less effective in reducing PFAS leaching across a range of leaching conditions. Sorbent performance was generally consistent with the sorbent's physical and chemical characteristics. Overall, the AC sorbents used in this study appeared to be better than the biochars in stabilising PFAS in the long term.


Assuntos
Fluorocarbonos , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Carvão Vegetal/química
14.
Sci Total Environ ; 875: 162653, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894096

RESUMO

Removal of per- and polyfluoroalkyl substances (PFASs) from water or their immobilization in soil using carbon-based sorbents is one of the cost-effective techniques. Considering the variety of carbon-based sorbents, identifying the key sorbent properties responsible for PFASs removal from solution or immobilization in the soil can assist in the selection of the best sorbents for management of contaminated sites. This study evaluated the performance of 28 carbon-based sorbents including granular and powdered activated carbon (GAC and PAC), mixed mode carbon mineral material, biochars, and graphene-based materials (GNBs). The sorbents were characterized for a range of physical and chemical properties. PFASs' sorption from an AFFF-spiked solution was examined via a batch experiment, while their ability to immobilize PFASs in soil was tested following mixing, incubation and extraction using the Australian Standard Leaching Procedure. Both soil and solution were treated with 1 % w/w sorbents. Comparing different carbon-based materials, PAC, mixed mode carbon mineral material and GAC were the most effective in sorbing PFASs in both solution and soil. Among the different physical characteristics measured, the sorption of long-chain and more hydrophobic PFASs in both soil and solution was best correlated with sorbent surface area measured using methylene blue, which highlights the importance of mesopores in PFASs sorption. Iodine number was found to be a better indicator of the sorption of short-chain and more hydrophilic PFASs from solution but was found to be poorly correlated with PFASs immobilization in soil for activated carbons. Sorbents with a net positive charge performed better than those with a net negative charge, or no net charge. This study showed that surface area measured by methylene blue and surface charge are the best indicators of sorbent performance with respect to sorption/reducing leaching of PFASs. These properties may be helpful in selecting sorbents for PFASs remediation of soils/waters.

15.
Chemosphere ; 333: 138903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187372

RESUMO

Historical use of aqueous film forming foams (AFFF) containing per- and poly-fluoroalkyl substances (PFAS) for fire-fighting activities has contributed to widespread contamination of infrastructure which can represent an ongoing source of PFAS to the surrounding environment. A concrete fire training pad with historical use of Ansulite and Lightwater AFFF formulations had PFAS concentrations measured to quantify spatial variability of PFAS within the pad. Surface chips and whole cores of concrete through to the underlying aggregate base were collected over the 24 × 9 m concrete pad and depth profiles of PFAS concentrations in nine cores were analysed. PFOS and PFHxS dominated the PFAS for surface samples, along the depth profile of cores and in the underlying plastic and aggregate material, with substantial variability in the concentrations of PFAS in the samples. Although there was variability of individual PFAS along the depth profile, higher surface concentrations of PFAS generally followed the designed movement of water across the pad. Total oxidisable precursor (TOP) assessments of one core indicated additional PFAS were present along the entire length of the core. This study highlights concentrations of PFAS (up to low µg/kg) from historical use of AFFF can occur throughout concrete, with the variable concentrations throughout the profile.


Assuntos
Ácidos Alcanossulfônicos , Incêndios , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Água
16.
J Hazard Mater ; 445: 130441, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36462244

RESUMO

This paper aims to describe the performance of a soil washing plant (SWP) for remediating a per- and poly-fluoroalkyl substances (PFASs)-contaminated soil with a high clay content (61%). The SWP used both physical and chemical processes; fractionation of the soil particles by size and partitioning of PFASs into the aqueous phase to remove PFASs from the soil. Contaminated water was treated in series with granulated activated carbon (GAC) and ion-exchange resin and reused within the SWP. Approximately 2200 t (dry weight) of PFAS-contaminated soil was treated in 25 batches of 90 t each, with a throughput of approximately 11 t soil/hr. Efficiency of the SWP was measured by observed decreases in total and leachable concentrations of PFASs in the soil. Average removal efficiencies (RE) were up to 97.1% for perfluorocarboxylic acids and 94.9% for perfluorosulfonic acids. REs varied among different PFASs depending on their chemistry (functional head group, carbon chain length) and were independent of the total PFAS concentrations in each soil batch. Mass balance analysis found approximately 90% of the PFAS mass in the soil was transferred to the wash solution and > 99.9% of the PFAS mass in the wash solution was transferred onto the GAC without any breakthrough.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Solo/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Argila , Poluição da Água/análise , Carvão Vegetal , Plantas
17.
J Environ Sci Health B ; 47(4): 240-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22428885

RESUMO

In this study, the dissipation of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TRM), in three soils under both aerobic and anaerobic conditions are evaluated. Under aerobic conditions, SMX dissipated rapidly through biodegradation but TRM was more persistent. Within the first 20 days in biologically active soils, >50% of the SMX was lost from the clay loam and loamy sand soils, and >80% loss was noted in the loam soil. Anaerobic dissipation of both compounds was more rapid than aerobic dissipation. The addition of manure to the soil only slightly increased the initial dissipation rate of the two compounds. Little effect was found on glucose mineralisation in soil following the addition of SMX and TRM, even as mixtures at high concentrations.


Assuntos
Esterco/análise , Poluentes do Solo/análise , Solo/análise , Sulfametoxazol/análise , Trimetoprima/análise , Antibacterianos/agonistas , Antibacterianos/metabolismo , Bactérias/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sulfametoxazol/metabolismo , Trimetoprima/metabolismo
18.
Water Res ; 225: 119096, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162294

RESUMO

Contamination through per-and poly-fluoroalkyl substances (PFAS) have occurred globally in soil and groundwater systems at military, airport and industrial sites due to the often decades-long periodic application of firefighting foams. At PFAS contaminated sites, the unsaturated soil horizon often serves as a long-term source for sustained PFAS contamination for both groundwater and surface water runoff. An understanding of the processes controlling future mass loading rates to the saturated zone from these source zones is imperative to design efficient remediation measures. In the present study, hydrochemical data from a site where PFAS transport was observed as a result of the decades-long application of AFFF were used to develop and evaluate conceptual and numerical models that determine PFAS mobility across the vadose zone under realistic field-scale conditions. The simulation results demonstrate that the climate-driven physical flow processes within the vadose zone exert a dominating control on the retention of PFAS. Prolonged periods of evapotranspiration exceeding rainfall under the semi-arid conditions trigger periods of upward flux and evapoconcentration, leading to the observed persistence of PFAS compounds in the upper ca. 2 metres of the vadose zone, despite cessation of AFFF application to soils since more than a decade. Physico-chemical retention mechanisms, namely sorption to the air-water interface (AWI) and sediment surfaces, contribute further to PFAS retention. The simulations demonstrate how PFAS downward transport is effectively confined to short periods following discrete rain events when soils display a high degree of saturation. During these periods, AWI sorption is at a minimum. In addition, high PFAS concentrations measured and simulated below the source zone reduce the effect of the AWI further due to a decrease in surface tension associated with elevated PFAS concentrations. Consequently, time-integrated PFAS migration and retardation illuminates that the field-relevant PFAS transport rates are predominantly controlled by the physical flow processes with a lower relative importance of AWI and sediment sorption adding to PFAS retention.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Água Subterrânea/química , Solo/química , Água
19.
Environ Pollut ; 309: 119754, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35835270

RESUMO

Spills of hydraulic fracturing (HF) fluids and of produced water during unconventional gas extraction operations may cause soil contamination. We studied the degradation and microbial toxicity of selected HF chemical components including two biocides (methylisothiozolinone- MIT, chloromethylisothiozolinone- CMIT), a gel-breaker aid (triethanolamine -TEA), and three geogenic chemicals (phenol, m-cresol and p-cresol) in ultrapure water, HF fluid and produced water in five different soil types (surface and subsurface soils). The degradation of the two biocides (in soils treated with HF fluid or ultrapure water) and of the three geogenic chemicals (in soils treated with produced water) was rapid (in all cases DT50 values < 2 days in surface soils). In contrast, the loss of TEA was much slower in soils, especially in those treated with HF fluid (DT50 > 30 days). Sorption coefficients (Koc in L/Kg) in these soils ranged from 71 to 733 for TEA, 64-408 for MIT and 11-72 for CMIT. In terms of soil microbial toxicity, exposure to HF fluid and produced water reduced microbial respiration, albeit temporarily. The overall microbial activities in surface soils contaminated with produced water had fully recovered in most soils. In contrast, the HF fluid addition to soils completely inhibited the nitrification in all soils, with little recovery over the 60 day experimental period. In the case of produced water exposure, three out of five surface soils showed complete recovery in nitrification during the study period. The functional genes for nitrogen fixation (nifH) and carbon cycling (GA1) and microbial community composition (16 S rRNA) were significantly affected by HF fluid in some soils. Overall, the study shows that the HF fluid can have significant detrimental impact on soil microbial functions, especially on nitrogen cycling. More work is needed to identify the exact cause of microbial toxicity in soils contaminated with HF fluid.


Assuntos
Desinfetantes , Fraturamento Hidráulico , Solo , Águas Residuárias/química , Água
20.
Sci Total Environ ; 817: 152975, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026264

RESUMO

The effect of soluble cations on sorption in soils of a range of anionic PFAS is not well studied. We investigated the role of three common cations (Na+, Ca2+, and Mg2+) at varying solution concentrations on the sorption coefficients (Kd) of 18 anionic PFAS in two contrasting soils. The effective charge of the soil suspension (Zeta potential) became less negative as the concentration of these cations increased in the soil solutions. Perfluorinated compounds showed greater sorption than polyfluorinated compounds, with sulfonates of comparable chain lengths showing higher sorption than the carboxylates. We observed that the Kd values of several PFAS in the two soils were positively correlated with the concentration of cations in solution, especially in the presence of polyvalent cations (Ca2+and Mg2+). The changes in sorption with cation concentration were more prominent for long-chain PFAS, with C > 10 PFAS being completely removed from solution at higher cation concentrations. The emerging PFAS (replacement compounds GenX and ADONA) showed negligible or little sorption (Kd < 0.6 L/kg). While several mechanisms contribute towards sorption of PFAS in the presence of cations, we conclude that the primary effect of cations is through screening of negative charges on head groups of PFAS and reorientation of molecules at the interface between organic matter surfaces and soil solution as well as charge neutralisation at soil solid surface. Screening of negative charges allows for greater hydrophobic interaction between hydrophobic tails of PFAS and soil surfaces resulting in greater sorption. Increasing cation concentrations in soil solutions could thus reduce mobility of PFAS through a soil profile.


Assuntos
Fluorocarbonos , Poluentes do Solo , Adsorção , Cátions/química , Fluorocarbonos/análise , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA