Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(46): 25068-25073, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939007

RESUMO

Synthetic porous materials continue to garner attention as platforms for solid-state chemistry and as designer heterogeneous catalysts. Applications in photochemistry and photocatalysis, however, are plagued by poor light harvesting efficiency due to light scattering resulting from sample microcrystallinity and poor optical penetration that arises from inner filter effects. Here we demonstrate the layer-by-layer growth of optically transparent, photochemically active thin films of porous salts. Films are grown by sequential deposition of cationic Zr-based porous coordination cages and anionic Mn porphyrins. Photolysis facilitates the efficient reduction of Mn(III) sites to Mn(II) sites, which can be observed in real-time by transmission UV-vis spectroscopy. Film porosity enables substrate access to the Mn(II) sites and facilitates reversible O2 activation in the solid state. These results establish optically transparent, porous salt thin films as versatile platforms for solid-state photochemistry and in operando spectroscopy.

2.
Small ; 19(30): e2207507, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052509

RESUMO

The preparation of a new class of reactive porous solids, prepared via straightforward salt metathesis reactions, is described here. Reaction of the dimethylammonium salt of a magnesium-based porous coordination cage with the chloride salt of [CrII Cl(Me4 cyclam)]+ affords a porous solid with concomitant removal of dimethylammonium chloride. The salt consists of the ions combined in the expected ratio based on their charge as confirmed by UV-vis and X-ray photoelectron spectroscopies, ion chromatography (IC), and inductively coupled plasma mass spectrometry (ICP-MS). The porous salt boasts a Brunauer-Emmett-Teller (BET) surface area of 213 m2  g-1 . Single crystal X-ray diffraction reveals the chromium(II) cations in the structure reside in the interstitial space between porous cages. Importantly, the chromium(II) centers, previously shown to react with O2 to afford reactive chromium(III)-superoxide adducts, are still accessible in the solid state as confirmed by UV-vis spectroscopy. The site-isolated reactive centers have competence toward hydrogen atom abstraction chemistry and display significantly increased stability and reactivity as compared to dissolved ions.

3.
Inorg Chem ; 61(11): 4609-4617, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35263080

RESUMO

Ligand functionalization has been thoroughly leveraged to alter the properties of paddlewheel-based coordination cages where, in the case of ligand-terminated cages, functional groups are positioned on the periphery of synthesized cages. While these groups can be used to optimize solubility, porosity, crystal packing, thermal stability toward desolvation, reactivity, or optical activity, optimization of multiple properties can be challenging given their interconnected nature. For example, installation of functional groups to increase the solubility of porous cages typically has the effect of decreasing their porosity and stability toward thermal activation. Here we show that mixed-ligand cages can potentially address these issues as the benefits of various functional groups can be combined into one mixed-ligand cage. We further show that although ligand exchange reactions can be employed to obtain mixed ligand copper(II)-based cages, direct synthesis of mixed-ligand products is necessary for molybdenum(II) paddlewheel-based cages as these substitutionally inert clusters are resistant to ligand exchange. We ultimately show that highly soluble, highly porous, and thermally stable cuboctahedral cages are isolable by this strategy.

4.
J Am Chem Soc ; 143(37): 14956-14961, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498853

RESUMO

A large library of novel porous salts based on charged coordination cages was synthesized via straightforward salt metathesis reactions. For these, solutions of salts of oppositely charged coordination cages are mixed to precipitate MOF-like permanently porous products where metal identity, pore size, ligand functional groups, and surface area are highly tunable. For most of these materials, the constituent cages combine in the ratios expected based on their charge. Additional studies focused on the rate of salt metathesis or reaction stoichiometry as variables to tune particle size or product composition, respectively. It is expected that the design principles outlined here will be widely applicable for the synthesis of new porous salts based on a variety of charged porous molecular precursors.

5.
Chemistry ; 27(14): 4531-4547, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33112484

RESUMO

Molecules with permanent porosity in the solid state have been studied for decades. Porosity in these systems is governed by intrinsic pore space, as in cages or macrocycles, and extrinsic void space, created through loose, intermolecular solid-state packing. The development of permanently porous molecular materials, especially cages with organic or metal-organic composition, has seen increased interest over the past decade, and as such, incredibly high surface areas have been reported for these solids. Despite this, examples of these materials being explored for gas storage applications are relatively limited. This minireview outlines existing molecular systems that have been investigated for gas storage and highlights strategies that have been used to understand adsorption mechanisms in porous molecular materials.

6.
Chem Mater ; 34(24): 10823-10831, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36590703

RESUMO

Porous salts have recently emerged as a promising new class of ultratunable permanently microporous solids. These adsorbents, which were first reported as ionic solids based on porous cations and anions, can be isolated from a wide variety of charged, permanently porous coordination cages. A challenge in realizing the full tunability of such systems, however, lies in the fact that the majority of coordination cages for which surface areas have been reported are comprised of charge-balanced inorganic and organic building blocks that result in neutral cages. As such, most reported permanently porous coordination cages cannot be used as reagents in the synthesis of porous salts. Here, we show that the facile reaction of TBAX (TBA+ = tetra-n-butylammonium; X = F- and Cl-) with molybdenum paddlewheel-based coordination cages of the M4L4 and M24L24 lantern and cuboctahedra structure types, respectively, affords charged cages by virtue of coordination of halide anions to the internal and/or external metal sites on these structures, as confirmed by single-crystal X-ray diffraction, X-ray photoelectron spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. At a practical level, the TBAX/cage reactions, which are fully reversible upon isolation of the cage with the appropriate solvent, solubilize otherwise rigorously insoluble cages. This method significantly increases the solution processability of these highly porous solids. Toward the formation of new porous salts, halide binding also serves to incorporate charge on neutral cages and make them amenable to simple salt metathesis reactions to afford new porous salts based on anions and cations with intrinsic porosity. A combination of diffraction methods and a suite of spectroscopic tools confirms speciation of the isolated solids, which represent a new class of highly tunable porous salts. Ultimately, this work represents a roadmap for the preparation of new porous solids and showcases the utility and broad applicability of anion binding as a strategy for the synthesis of porous salts.

7.
Dalton Trans ; 51(23): 9103-9115, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35666488

RESUMO

A novel synthesis of diphenyl(2-thienyl)phosphine, along with its' oxide, sulfide and selenide derivatives, is reported here. These phosphines have been characterized by NMR, IR, MS and X-Ray crystallography. The phosphine oxide derivative was reacted with a selection of lanthanide(III) nitrates and triflates, LnX3, to give the resultant metal-ligand complexes. These complexes have also been characterized by NMR, IR, MS and X-Ray crystallography. Single crystal X-Ray diffraction data shows a difference in metal-ligand complex stoichiometry and stereochemistry depending on the counteranion (nitrate vs. triflate). The [Ln(Ar3PO)3(NO3)3] ligand-nitrate complexes are nine-coordinate to the metal in the solid state (bidentate nitrate), featuring a 1 : 3 lanthanide-ligand ratio and bear an overall octahedral arrangement of the six, coordinated ligands. Our [Ln(Ar3PO)3(NO3)3] ligand-nitrate complexes gave three examples of fac-stereochemistry, where mer-stereochemistry is almost universally observed in the literature of highly related [Ln(Ar3PO)3(NO3)3] complexes. For the Tb complexes, two different arrangements of the ligands around the metal were observed in the solid state for [Tb(Ar3PO)3(NO3)3] and [Tb(Ar3PO)4(OTf)2] [OTf]. [Tb(Ar3PO)3(NO3)3] is strictly nine-coordinate, ligand mer-stereochemistry in the solid state, and [Tb(Ar3PO)4(OTf)2] [OTf] is strictly octahedral, six-coordinate, with a square-planar stereochemical arrangement of the phosphine oxide ligands around the metal.


Assuntos
Complexos de Coordenação , Elementos da Série dos Lantanídeos , Fosfinas , Compostos de Bifenilo , Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Ligantes , Nitratos/química , Óxidos de Nitrogênio , Óxidos , Fosfinas/química
8.
Chem Sci ; 11(46): 12540-12546, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34123234

RESUMO

Diverse strategies for the preparation of mixed-metal three-dimensional porous solids abound, although many of them lend themselves only moderate levels of tunability. Herein, we report the design and synthesis of surface functionalized permanently microporous coordination cages and their use in the isolation of mixed metal solids. Judicious alkoxide-based ligand functionalization was utilized to tune the solubility of starting copper(ii)-based cages and their resulting compatibility with the mixed-cage approach described here. We further prepared a family of isostructural molybdenum(ii) cages for a subset of the ligands. The preparation of mixed-metal cage solids proceeds under facile conditions where solutions of parent cages are mixed and product phases isolated. A suite of spectroscopic and characterization tools confirm the starting cages are intact in the amorphous product. Finally, we show that utilization of precise ligand functional groups can be used to prepare mixed cage solids that can be easily and cleanly separated into their constituent components through simple solvent washing or solvent extraction techniques.

9.
ACS Appl Mater Interfaces ; 12(36): 40318-40327, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786240

RESUMO

A useful correlation between the low-pressure (up to 1.2 bar), low-temperature (195 K) and high-pressure (up to 65 bar), room temperature (298 K) methane storage properties of a range of porous materials is reported. Methane isotherms under these two sets of conditions show a remarkable agreement in both equilibrium adsorption and deliverable capacities for materials with pore volumes that are less than approximately 0.80 cm3/g. This trend holds well for the suite of metal-organic frameworks and porous coordination cages we studied, in addition to a zeolite and porous organic cage. Although it is well known that gravimetric gas storage capacity trends with gravimetric surface area, the 1.2 bar, 195 K excess adsorption capacity of a given framework is a better indicator of its room temperature, 65 bar capacity. Given the significantly smaller sample quantities needed for low-pressure measurements, greater accessibility to researchers around the world, accuracy of the measurement, and higher throughput, we envision this method as a rapid screening tool for the identification of methane storage materials. As excess/total adsorption and gravimetric/volumetric adsorption can be interconverted by simple utilization of the scalar quantities of pore volume or density, respectively, this method can be easily adapted to obtain both gravimetric and volumetric total adsorption capacities for a given adsorbent. In terms of volumetric methane adsorption, we further investigate the relationship between crystallographic and bulk density for the adsorbents studied here. With this analysis, it becomes apparent that in the absence of novel synthetic approaches, reported volumetric storage capacities should be viewed as an optimistic upper limit for a given material and not necessarily a true reflection of its actual adsorption properties as most MOFs have bulk densities that are less than half of their crystallographic values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA