Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012515

RESUMO

The orphan insulin receptor-related receptor (IRR) encoded by insrr gene is the third member of the insulin receptor family, also including the insulin receptor (IR) and the insulin-like growth factor receptor (IGF-1R). IRR is the extracellular alkaline medium sensor. In mice, insrr is expressed only in small populations of cells in specific tissues, which contain extracorporeal liquids of extreme pH. In particular, IRR regulates the metabolic bicarbonate excess in the kidney. In contrast, the role of IRR during Xenopus laevis embryogenesis is unknown, although insrr is highly expressed in frog embryos. Here, we examined the insrr function during the Xenopus laevis early development by the morpholino-induced knockdown. We demonstrated that insrr downregulation leads to development retardation, which can be restored by the incubation of embryos in an alkaline medium. Using bulk RNA-seq of embryos at the middle neurula stage, we showed that insrr downregulation elicited a general shift of expression towards genes specifically expressed before and at the onset of gastrulation. At the same time, alkali treatment partially restored the expression of the neurula-specific genes. Thus, our results demonstrate the critical role of insrr in the regulation of the early development rate in Xenopus laevis.


Assuntos
Desenvolvimento Embrionário , Receptor de Insulina , Proteínas de Xenopus , Animais , Desenvolvimento Embrionário/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
2.
Genesis ; 57(5): e23293, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912273

RESUMO

The Agr family genes, Ag1, Agr2, and Agr3, encode for the thioredoxin domain containing secreted proteins and are specific only for vertebrates. These proteins are attracting increasing attention due to their involvement in many physiological and pathological processes, including exocrine secretion, cancer, regeneration of the body appendages, and the early brain development. At the same time, the mode by which Agrs regulate intracellular processes are poorly understood. Despite that the receptor to Agr2, the membrane anchored protein Prod1, has been firstly discovered in Urodeles, and it has been shown to interact with Agr2 in the regenerating limb, no functional homologs of Prod1 were identified in other vertebrates. This raises the question of the mechanisms by which Agrs can regulate regeneration in other lower vertebrates. Recently, we have identified that Tfp4 (three-fingers Protein 4), the structural and functional homolog of Prod1 in Anurans, interacts with Agr2 in Xenopus laevis embryos. In the present work we show by several methods that the activity of Tfp4 is essential for the tadpole tail regeneration as well as for the early eye and forebrain development during embryogenesis. These data show for the first time the common molecular mechanism of regeneration regulation in amphibians by interaction of Prod1 and Agr2 proteins.


Assuntos
Arginase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Regeneração/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Transporte/metabolismo , Desenvolvimento Embrionário , Extremidades/embriologia , Larva/genética , Larva/metabolismo , Organogênese , Ligação Proteica/fisiologia , Regeneração/genética , Tiorredoxinas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
3.
Biol Direct ; 18(1): 45, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568147

RESUMO

BACKGROUND: It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. RESULTS: To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. CONCLUSIONS: We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution.


Assuntos
Mamíferos , Animais
4.
Dev Cell ; 57(1): 95-111.e12, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919801

RESUMO

How embryos scale patterning according to size is still not fully understood. Through in silico screening and analysis of reaction-diffusion systems that could be responsible for scaling, we predicted the existence of genes whose expression is sensitive to embryo size and which regulate the scaling of embryonic patterning. To find these scalers, we identified genes with strongly altered expression in half-size Xenopus laevis embryos compared with full-size siblings at the gastrula stage. Among found genes, we investigated the role of matrix metalloproteinase-3 (mmp3), which was most strongly downregulated in half-size embryos. We show that Mmp3 scales dorsal-ventral patterning by degrading the slowly diffusing embryonic inducers Noggin1 and Noggin2 but preventing cleavage of the more rapidly diffusing inducer Chordin via degradation of a Tolloid-type proteinase. In addition to unraveling the mechanism underlying the scaling of dorsal-ventral patterning, this work provides proof of principal for scalers identification in embryos of other species.


Assuntos
Padronização Corporal/genética , Metaloproteinase 3 da Matriz/metabolismo , Organizadores Embrionários/metabolismo , Animais , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Tamanho Celular , Embrião não Mamífero/metabolismo , Gástrula/metabolismo , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metaloproteinase 3 da Matriz/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia
5.
Cell Rep ; 29(4): 1027-1040.e6, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644900

RESUMO

The molecular basis of higher regenerative capacity of cold-blooded animals comparing to warm-blooded ones is poorly understood. Although this difference in regenerative capacities is commonly thought to be a result of restructuring of the same regulatory gene network, we hypothesized that it may be due to loss of some genes essential for regeneration. We describe here a bioinformatic method that allowed us to identify such genes. For investigation in depth we selected one of them encoding transmembrane protein, named "c-Answer." Using the Xenopus laevis frog as a model cold-blooded animal, we established that c-Answer regulates regeneration of body appendages and telencephalic development through binding to fibroblast growth factor receptors (FGFRs) and P2ry1 receptors and promoting MAPK/ERK and purinergic signaling. This suggests that elimination of c-answer in warm-blooded animals could lead to decreased activity of at least two signaling pathways, which in turn might contribute to changes in mechanisms regulating regeneration and telencephalic development.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Regeneração , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Biologia Computacional , Sistema de Sinalização das MAP Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Xenopus laevis
6.
Sci Rep ; 8(1): 13035, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158598

RESUMO

In contrast to amniotes (reptiles, birds and mammals), anamniotes (fishes and amphibians) can effectively regenerate body appendages such as fins, limbs and tails. Why such a useful capability was progressively lost in amniotes remains unknown. As we have hypothesized recently, one of the reasons for this could be loss of some genes regulating the regeneration in evolution of amniotes. Here, we demonstrate the validity of this hypothesis by showing that genes of small GTPases Ras-dva1 and Ras-dva2, that had been lost in a stepwise manner during evolution of amniotes and disappeared completely in placental mammals, are important for regeneration in anamniotes. Both Ras-dva genes are quickly activated in regenerative wound epithelium and blastema forming in the amputated adult Danio rerio fins and Xenopus laevis tadpoles' tails and hindlimb buds. Down-regulation of any of two Ras-dva genes in fish and frog resulted in a retardation of regeneration accompanied by down-regulation of the regeneration marker genes. On the other hand, Ras-dva over-expression in tadpoles' tails restores regeneration capacity during the refractory period when regeneration is blocked due to natural reasons. Thus our data on Ras-dva genes, which were eliminated in amniotes but play role in anamniotes regeneration regulation, satisfy our hypothesis.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Regeneração , Animais , Xenopus laevis , Peixe-Zebra
7.
PLoS One ; 12(2): e0171212, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28170437

RESUMO

The Turing instability in the reaction-diffusion system is a widely recognized mechanism of the morphogen gradient self-organization during the embryonic development. One of the essential conditions for such self-organization is sharp difference in the diffusion rates of the reacting substances (morphogens). In classical models this condition is satisfied only for significantly different values of diffusion coefficients which cannot hold for morphogens of similar molecular size. One of the most realistic explanations of the difference in diffusion rate is the difference between adsorption of morphogens to the extracellular matrix (ECM). Basing on this assumption we develop a novel mathematical model and demonstrate its effectiveness in describing several well-known examples of biological patterning. Our model consisting of three reaction-diffusion equations has the Turing-type instability and includes two elements with equal diffusivity and immobile binding sites as the third reaction substance. The model is an extension of the classical Gierer-Meinhardt two-components model and can be reduced to it under certain conditions. Incorporation of ECM in the model system allows us to validate the model for available experimental parameters. According to our model introduction of binding sites gradient, which is frequently observed in embryonic tissues, allows one to generate more types of different spatial patterns than can be obtained with two-components models. Thus, besides providing an essential condition for the Turing instability for the system of morphogen with close values of the diffusion coefficients, the morphogen adsorption on ECM may be important as a factor that increases the variability of self-organizing structures.


Assuntos
Adsorção , Difusão , Desenvolvimento Embrionário , Modelos Teóricos , Algoritmos , Animais , Simulação por Computador , Embrião não Mamífero/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA