Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 137(42): 13603-11, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26435484

RESUMO

We have found that the 3D zeolitic imidazolate framework ZIF-7 exhibits far more complex behavior in response to the adsorption of guest molecules and changes in temperature than previously thought. We believe that this arises from the existence of different polymorphs and different types of adsorption sites. We report that ZIF-7 undergoes a displacive, nondestructive phase change upon heating to above ∼700 °C in vacuum, or to ∼500 °C in CO2 or N2. This is the first example of a temperature-driven phase change in 3D ZIF frameworks. We predicted the occurrence of the high-temperature transition on the basis of thermodynamic arguments and analyses of the solid free-energy differences obtained from CO2 and n-butane adsorption isotherms. In addition, we found that ZIF-7 exhibits complex behavior in response to the adsorption of CO2 manifesting in double transitions on adsorption isotherms and a doubling of the adsorption capacity. We report adsorption microcalorimetry, molecular simulations, and detailed XRD investigations of the changes in the crystal structure of ZIF-7. Our results highlight mechanistic details of the phase transitions in ZIF-7 that are driven by adsorption of guest molecules at low temperature and by entropic effects at high temperature. We derived a phase diagram of CO2 in ZIF-7, which exhibits surprisingly complex re-entrant behavior and agrees with our CO2 adsorption measurements over a wide range of temperatures and pressures. We predicted phase diagrams of CH4, C3H6, and C4H10. Finally, we modeled the temperature-induced transition in ZIF-7 using molecular dynamics simulations in the isobaric-isothermal ensemble, confirming our thermodynamic arguments.

2.
Sci Rep ; 13(1): 7111, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130850

RESUMO

Unconventional hydrocarbon assets represent a rapidly expanding proportion of North American oil and gas production. Similar to the incipient phase of conventional oil production at the turn of the twentieth century, there are ample opportunities to improve production efficiency. In this work we demonstrate that pressure dependent permeability degradation exhibited by unconventional reservoir materials is due to the mechanical response of a few commonly encountered microstructural constituents. In particular, the mechanical response of unconventional reservoir materials may be conceptualized as the superposed deformation of matrix (or ~ cylindrical/spherical), and compliant (or slit) pores. The former are representative of pores in a granular medium or a cemented sandstone, while the latter represent pores in an aligned clay compact or a microcrack. As a result of this simplicity, we demonstrate that permeability degradation is accounted for through a weighted superposition of conventional permeability models for these pore architectures. This approach permits us to conclude that the most severe pressure dependence is due to imperceptible bedding parallel delamination cracks in the oil bearing argillaceous (clay-rich) mudstones. Finally, we demonstrate that these delaminations tend to populate layers that are enriched with organic carbon. These findings are a basis for improving recovery factors through the development of new completion techniques to exploit, then mitigate pressure dependent permeability in practice.

3.
Chemphyschem ; 10(15): 2623-7, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19750534

RESUMO

Recording the evolution of concentration profiles in nanoporous materials opens a new field of diffusion research with particle ensembles. The technique is based on the complementary application of interference microscopy and IR micro-imaging. Combining the virtues of diffusion measurements with solids and fluids, it provides information of unprecedented wealth and visual power on transport phenomena in molecular ensembles. These phenomena include the diverging uptake and release patterns for concentration-dependent diffusivities, the mechanisms of mass transfer at the fluid-solid interface and opposing tendencies in local and global concentration evolution.

4.
Science ; 358(6366): 1068-1071, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170235

RESUMO

The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses of these molecules in industry. This technique has the potential to provide tremendous energy savings when compared with the currently used cryogenic distillation process for ethylene produced through steam cracking. Here we describe the synthesis and structural determination of a flexible pure silica zeolite (ITQ-55). This material can kinetically separate ethylene from ethane with an unprecedented selectivity of ~100, owing to its distinctive pore topology with large heart-shaped cages and framework flexibility. Control of such properties extends the boundaries for applicability of zeolites to challenging separations.

5.
J Phys Chem B ; 110(47): 23821-8, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125347

RESUMO

Evolution of internal concentration profiles of methanol in 2-D pore structure of ferrierite crystal was measured in the pressure range of 0 to 80 mbar with the help of the recently developed interference microscopy technique. The measured profiles showed that both a surface barrier and internal diffusion controlled the kinetics of adsorption/desorption. Furthermore, they indicated that in the main part of the crystal, the z-directional 10-ring channels were not accessible to methanol and that the transport of methanol mainly occurred via 8-ring y-directional channels. The roof-like part of the crystal was almost instantaneously filled/emptied during adsorption/desorption, indicating accessible 10-ring channels in this section. The measured profiles were analyzed microscopically with the direct application of Fick's second law, and the transport diffusivity of methanol in ferrierite was determined as a function of adsorbed phase concentration. The transport diffusivity varied by more than 2 orders of magnitude over the investigated pressure range. Transport diffusivities, calculated from measured profiles from small and large pressure step changes, were all found to be consistent. Simulated concentration profiles obtained from the solution of Fick's second law with the calculated functional dependence of diffusivities on concentration compared very well with the measured concentration profiles, indicating validity and consistency of the measured data and the calculated diffusivities. The results indicate the importance of measuring the evolution of concentration profiles as this information is vital in determining (1) the direction of internal transport, (2) the presence of internal structural defects, and (3) surface/internal transport barriers. Such detailed information is available neither from common macroscopic methods since, they measure changes in macroscopic properties and use model assumptions to predict the concentration profiles inside, nor from microscopic methods, since they only provide information on average displacement of diffusing molecules.

6.
J Phys Chem B ; 109(12): 5746-52, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16851623

RESUMO

The pulsed field gradient nuclear magnetic resonance method has been employed to probe self-diffusion of organic guest molecules adsorbed in porous silicon with a 3.6 nm pore size. The molecular self-diffusion coefficient and intrapore adsorption were simultaneously measured as a function of the external vapor pressure. The latter was varied in a broad range to provide pore loading from less than monolayer surface coverage to full pore saturation. The measured diffusivities are found to be well-correlated with the adsorption isotherms. At low molecular concentrations in the pores, corresponding to surface coverages of less than one monolayer, the self-diffusion coefficient strongly increases with increasing concentration. This observation is attributed to the occurrence of activated diffusion on a heterogeneous surface. Additional experiments in a broad temperature range and using binary mixtures confirm this hypothesis.

7.
Magn Reson Imaging ; 23(2): 209-14, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15833614

RESUMO

The pulsed-field gradient NMR method has been applied to study self-diffusion of liquids in mesoporous materials with different pore sizes and morphologies as a function of pore loading. It is found that the effective diffusivities of adsorbate molecules in mesopores at partial loadings are related to two mechanisms, the Knudsen diffusion through the gaseous phase in the pore space and the diffusion within the layer of molecules adsorbed on the pore walls. The relative contributions of these modes, which are determined by the details of the interphase equilibrium, change with variation of the pore loading, leading to a complex behavior of the effective self-diffusion coefficient. The impact of the pore size and the adsorbate-surface interaction on self-diffusion is elucidated. Possible reasons for an experimentally obtained hysteresis in the diffusivities measured on adsorption and desorption in mesopores are discussed.


Assuntos
Adsorção , Espectroscopia de Ressonância Magnética , Porosidade , Difusão , Silício/química
9.
J Chem Phys ; 126(5): 054705, 2007 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-17302496

RESUMO

The pulsed field gradient nuclear magnetic resonance method has been used to study self-diffusion of cyclohexane in a commercial MCM-41 material at different external gas pressures from zero to saturated vapor pressure. It is found that the effective diffusivities exhibit three different regions with increasing pressure: decrease at low pressures, a sudden drop at intermediate pressures, and increase at higher pressures. In addition, in the region of irreversible adsorption (hysteresis loop) the diffusivities are also found to differ on the adsorption and the desorption branches. A simple analytical model taking account of different molecular ensembles with different transport properties due to the complex architecture of the porous structure is developed which provides a quantitative prediction of the experimental data. The analysis reveals that the effective diffusivity is predominantly controlled by the adsorption properties of the individual mesoporous MCM-41 crystallites which, in combination with high transport rates, provide a simple instrument for fine tuning of the transport properties by a subtle variation of the external conditions.

10.
J Am Chem Soc ; 129(25): 8041-7, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17547400

RESUMO

The intracrystalline concentration profiles during molecular uptake of methanol by an initially empty, single crystal of microporous manganese(II) formate (Mn(HCO2)2), representing an ionic inorganic-organic hybrid within the MOF family, are monitored by interference microscopy. Within these profiles, a crystal section could be detected where over the total of its extension ( approximately 2 microm x 50 microm x 30 microm) molecular uptake ideally followed the pattern of one-dimensional diffusion. Analysis of the evolution of intracrystalline concentration in this section directly yields the permeability of the crystal surface and the intracrystalline diffusivity as a function of the concentration of the total range of 0

11.
J Chem Phys ; 120(24): 11804-14, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15268215

RESUMO

Nuclear magnetic resonance has been applied to study the details of molecular motion of low-molecular-weight polar and nonpolar organic liquids in nanoporous silicon crystals of straight cylindrical pore morphology at different pore loadings. Effective self-diffusion coefficients as obtained using the pulsed field gradient nuclear magnetic resonance method were found to pass through a maximum with increasing concentration for all liquids under study. Taking account of a concentration-dependent coexistence of capillary condensed, adsorbed and gaseous phases a generalized model for the effective self-diffusion coefficient was developed and shown to satisfactorily explain the experimental results. An explicit use of the adsorption isotherm properties within the model extends its applicability to the mesoporous range and highlights the role of surface interaction for the transport of molecules in small pores. The problem of surface diffusion and diffusion of multilayered molecules is also addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA