Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 423: 115579, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015281

RESUMO

Cardiomyopathy resistant to treatment is the most serious adverse effect of doxorubicin (dox). The mechanisms of dox-induced cardiomyopathy (DCM) have been extensively studied in dilated forms of DCM. However, efficient treatment did not emerge. The aim of the present work was to revisit the experimental model of DCM in rats, to define phenotype/s and associate them to the changes in cardiac transcriptome. Male Wistar rats equipped with radiotelemetry device, were randomized in DOX group (5 mg/0,5 mL/kg, IV dox; n = 18) and CONT group (0,5 mL/kg IV saline; n = 6). Echocardiography, autonomic spectral markers and baroreceptor reflex evaluation was performed prior to, and after treatment. Blood samples were collected at the end of experimentation. Cardiac, renal and hepatic tissues were analysed post-mortem by histology. Changes in expression of key cardiac genes affected by dox were assessed by RT-qPCR. Phenotypes were identified by clustering non-redundant features using four different algorithms averaged by evidence accumulation cluster technique. The results emphasize the existence of two major phenotypes of DCM with comparably high mortality rates: phenotype 1 characterized by, left ventricular (LV) dilatation, thinning of LV posterior wall, reduced LV ejection fraction (LVEF) and fractional shortening (LVFS), decreased HR variability (HRV), decreased baroreceptor effectiveness index (BEI) and increased NT-proBNP; and phenotype 2 with LV hypertrophy - increased LV mass, preserved LVEF, LVFS, no changes in HRV and BEI and moderate NT-proBNP increase. Both phenotypes exhibited a genetic shift to a new-born program.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/classificação , Cardiomiopatias/genética , Mapeamento Cromossômico/métodos , Doxorrubicina/toxicidade , Animais , Cardiomiopatias/induzido quimicamente , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
2.
Hypertens Res ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039283

RESUMO

Chronic hypertensive pregnancy (CHP) is a growing health issue with unknown etiology. Vasopressin (VP), a nonapeptide synthesized in paraventricular (PVN) and supraoptic nucleus (SON), is a well-known neuroendocrine and autonomic modulator of the cardiovascular system, related to hypertension development. We quantified gene expression of VP and its receptors, V1aR and V1bR, within the PVN and SON in CHP and normal pregnancy, and assessed levels of secreted plasma VP. Also, we evaluated autonomic cardiovascular adaptations to CHP using spectral indices of blood pressure (BPV) and heart rate (HRV) short-term variability, and spontaneous baroreflex sensitivity (BRS). Experiments were performed in female spontaneously hypertensive rats (SHRs) and in normotensive Wistar rats (WRs). Animals were equipped with a radiotelemetry probe for continuous hemodynamic recordings before and during pregnancy. BPV, HRV and BRS were assessed using spectral analysis and the sequence method, respectively. Plasma VP was determined by ELISA whilst VP, V1aR, and V1bR gene expression was analyzed by real-time-quantitative PCR (RT-qPCR). The results show that non-pregnant SHRs exhibit greater VP, V1aR, and V1bR gene expression in both PVN and SON respectively, compared to Wistar dams. Pregnancy decreased VP gene expression in the SON of SHRs but increased it in the PVN and SON of WRs. Pregnant SHRs exhibited a marked drop in plasma VP concentration associated with BP normalization. This triggered marked tachycardia, heart rate variability increase, and BRS increase in pregnant SHRs. It follows that regardless of BP normalization in late pregnancy, SHRs exhibit cardiovascular vulnerability and compensate by recruiting vagal mechanisms. Pregnant SHR dams have reduced expression of VP in SON associated with increased V1bR expression, lower plasma VP, normal BP during late pregnancy and marked signs of enhanced sympathetic cardiac stimulation (increased HR and LFHR variability) and recruitment of vagal mechanisms (enhancement of BRS and HFHR variability).

3.
Biomed Pharmacother ; 145: 112411, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781149

RESUMO

Doxorubicin (DOX) is an effective anticancer drug. However, its use is hampered by the development of very mortal cardiomyopathy. Here, we investigate whether the co-administration of the antidepressant paroxetine (P), known to exert beneficial cardiovascular effects, would provide effective cardioprotection. Experiments were performed in male Wistar rats randomly assigned to control group (0.5 mL/kg 0.9% NaCl, i.v., n = 7), DOX group (DOX 5 mg /kg i.v., n = 23) and DOX+P group (DOX 5 mg/kg, i.v. plus P 10 mg/kg p.o. daily, beginning five days before DOX administration and during the follow-up period, n = 11). Rats' body weight and echocardiography parameters were monitored before and after drug/vehicle administration. Cardiac histology was performed post-mortem, as well as beta1-adrenergic receptor (ß1-AR), beta2-adrenergic receptor (ß2-AR), G protein-coupled receptor kinases type 2 (GRK2), type 3 (GRK3), beta-arrestin 1, and beta-arrestin 2 gene expression using RT-qPCR. DOX-treated rats exhibited bad general condition, adynamia, loss of body weight, and low survival. Echocardiography revealed two phenotypes: cardiomyopathy with left ventricular (LV) hypertrophy (DOX-HCM) and cardiomyopathy with LV dilation (DOX-DCM). In DOX-HCM rats only, there was an increased GRK2 and GRK3 gene expression and synthesis. DOX+P co-treated rats exhibited good general condition, normal spontaneous behaviour, gained weight over time, had increased survival, and preserved LV morphology and contractility. In these rats, gene expression and synthesis of GRK2 and GRK3 were decreased, while ß1-AR and ß2-AR were increased. Present results show for the first time that P effectively reduces DOX-induced cardiotoxicity and enhances survival.


Assuntos
Cardiomiopatias/prevenção & controle , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Paroxetina/farmacologia , Animais , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/mortalidade , Cardiotônicos/farmacologia , Cardiotoxicidade/etiologia , Cardiotoxicidade/mortalidade , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA