Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(7): e2308901121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315843

RESUMO

Global warming increases available sensible and latent heat energy, increasing the thermodynamic potential wind intensity of tropical cyclones (TCs). Supported by theory, observations, and modeling, this causes a shift in mean TC intensity, which tends to manifest most clearly at the greatest intensities. The Saffir-Simpson scale for categorizing damage based on the wind intensity of TCs was introduced in the early 1970s and remains the most commonly used metric for public communication of the level of wind hazard that a TC poses. Because the scale is open-ended and does not extend beyond category 5 (70 m/s windspeed or greater), the level of wind hazard conveyed by the scale remains constant regardless of how far the intensity extends beyond 70 m/s. This may be considered a weakness of the scale, particularly considering that the destructive potential of the wind increases exponentially. Here, we consider how this weakness becomes amplified in a warming world by elucidating the past and future increases of peak wind speeds in the most intense TCs. A simple extrapolation of the Saffir-Simpson scale is used to define a hypothetical category 6, and we describe the frequency of TCs, both past and projected under global warming, that would fall under this category. We find that a number of recent storms have already achieved this hypothetical category 6 intensity and based on multiple independent lines of evidence examining the highest simulated and potential peak wind speeds, more such storms are projected as the climate continues to warm.

2.
Nature ; 564(7735): E11-E16, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30410125

RESUMO

In this Letter, two errors in the methodology are corrected, leading to changes in Figs. 1-3 and Extended Data Figs. 1 and 2, although the essential results are not affected. The original Letter has been corrected online.

3.
Nature ; 558(7708): 104-107, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875485

RESUMO

As the Earth's atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation1-8. Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures10-12. The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949-2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the 'stall' of Hurricane Harvey13-15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over land, is therefore highly relevant when considering potential changes in local rainfall totals.

4.
Nature ; 541(7637): 390-393, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28052058

RESUMO

The North Atlantic ocean/atmosphere environment exhibits pronounced interdecadal variability that is known to strongly modulate Atlantic hurricane activity. Variability in sea surface temperature (SST) is correlated with hurricane variability through its relationship with the genesis and thermodynamic potential intensity of hurricanes. Another key factor that governs the genesis and intensity of hurricanes is ambient environmental vertical wind shear (VWS). Warmer SSTs generally correlate with more frequent genesis and greater potential intensity, while VWS inhibits genesis and prevents any hurricanes that do form from reaching their potential intensity. When averaged over the main hurricane-development region in the Atlantic, SST and VWS co-vary inversely, so that the two factors act in concert to either enhance or inhibit basin-wide hurricane activity. Here I show, however, that conditions conducive to greater basin-wide Atlantic hurricane activity occur together with conditions for more probable weakening of hurricanes near the United States coast. Thus, the VWS and SST form a protective barrier along the United States coast during periods of heightened basin-wide hurricane activity. Conversely, during the most-recent period of basin-wide quiescence, hurricanes (and particularly major hurricanes) near the United States coast, although substantially less frequent, exhibited much greater variability in their rate of intensification, and were much more likely to intensify rapidly. Such heightened variability poses greater challenges to operational forecasting and, consequently, greater coastal risk during hurricane events.

5.
Proc Natl Acad Sci U S A ; 117(22): 11975-11980, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424081

RESUMO

Theoretical understanding of the thermodynamic controls on tropical cyclone (TC) wind intensity, as well as numerical simulations, implies a positive trend in TC intensity in a warming world. The global instrumental record of TC intensity, however, is known to be heterogeneous in both space and time and is generally unsuitable for global trend analysis. To address this, a homogenized data record based on satellite data was previously created for the period 1982-2009. The 28-y homogenized record exhibited increasing global TC intensity trends, but they were not statistically significant at the 95% confidence level. Based on observed trends in the thermodynamic mean state of the tropical environment during this period, however, it was argued that the 28-y period was likely close to, but shorter than, the time required for a statistically significant positive global TC intensity trend to appear. Here the homogenized global TC intensity record is extended to the 39-y period 1979-2017, and statistically significant (at the 95% confidence level) increases are identified. Increases and trends are found in the exceedance probability and proportion of major (Saffir-Simpson categories 3 to 5) TC intensities, which is consistent with expectations based on theoretical understanding and trends identified in numerical simulations in warming scenarios. Major TCs pose, by far, the greatest threat to lives and property. Between the early and latter halves of the time period, the major TC exceedance probability increases by about 8% per decade, with a 95% CI of 2 to 15% per decade.

6.
Nature ; 570(7759): E16-E22, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168112
7.
Nature ; 509(7500): 349-52, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24828193

RESUMO

Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.


Assuntos
Tempestades Ciclônicas/estatística & dados numéricos , Mapeamento Geográfico , Clima Tropical , Vento , Geografia , Aquecimento Global/estatística & dados numéricos , Atividades Humanas
8.
Proc Natl Acad Sci U S A ; 113(46): 12963-12967, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799528

RESUMO

Given the threats that tropical cyclones (TC) pose to people and infrastructure, there is significant interest in how the climatology of these storms may change with climate. The global historical record has been extensively examined, but it is short and plagued with recurring questions about its homogeneity, limiting its effectiveness at assessing how TCs vary with climate. Past warm intervals provide an opportunity to quantify TC behavior in a warmer-than-present world. Here, we use a TC-resolving (∼25 km) global atmospheric model to investigate TC activity during the mid-Pliocene warm period (3.264-3.025 Ma) that shares similarities with projections of future climate. Two experiments, one driven by the reconstructed sea surface temperatures (SSTs) and the other by the SSTs from an ensemble of mid-Pliocene simulations, consistently predict enhanced global-average peak TC intensity during the mid-Pliocene coupled with longer duration, increased power dissipation, and a poleward migration of the location of peak intensity. The simulations are similar to global TC changes observed during recent global warming, as well as those of many future projections, providing a window into the potential TC activity that may be expected in a warmer world. Changes to power dissipation and TC frequency, especially in the Pacific, are sensitive to the different SST patterns, which could affect the viability of the role of TCs as a factor for maintaining a reduced zonal SST gradient during the Pliocene, as recently hypothesized.

10.
Nature ; 479(7371): 94-7, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22051678

RESUMO

Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.


Assuntos
Aerossóis/análise , Atmosfera/química , Tempestades Ciclônicas/estatística & dados numéricos , Fuligem/análise , Clima Tropical , Aerossóis/química , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Arábia , Desastres/estatística & dados numéricos , Temperatura Alta , Atividades Humanas , Humanos , Oceanos e Mares , Estações do Ano , Vento
12.
Nature ; 455(7209): 92-5, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18769438

RESUMO

Atlantic tropical cyclones are getting stronger on average, with a 30-year trend that has been related to an increase in ocean temperatures over the Atlantic Ocean and elsewhere. Over the rest of the tropics, however, possible trends in tropical cyclone intensity are less obvious, owing to the unreliability and incompleteness of the observational record and to a restricted focus, in previous trend analyses, on changes in average intensity. Here we overcome these two limitations by examining trends in the upper quantiles of per-cyclone maximum wind speeds (that is, the maximum intensities that cyclones achieve during their lifetimes), estimated from homogeneous data derived from an archive of satellite records. We find significant upward trends for wind speed quantiles above the 70th percentile, with trends as high as 0.3 +/- 0.09 m s(-1) yr(-1) (s.e.) for the strongest cyclones. We note separate upward trends in the estimated lifetime-maximum wind speeds of the very strongest tropical cyclones (99th percentile) over each ocean basin, with the largest increase at this quantile occurring over the North Atlantic, although not all basins show statistically significant increases. Our results are qualitatively consistent with the hypothesis that as the seas warm, the ocean has more energy to convert to tropical cyclone wind.

13.
J Air Waste Manag Assoc ; 64(2): 184-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24654387

RESUMO

Air and water quality are impacted by extreme weather and climate events on time scales ranging from minutes to many months. This review paper discusses the state of knowledge of how and why extreme events are changing and are projected to change in the future. These events include heat waves, cold waves, floods, droughts, hurricanes, strong extratropical cyclones such as nor'easters, heavy rain, and major snowfalls. Some of these events, such as heat waves, are projected to increase, while others, with cold waves being a good example, will decrease in intensity in our warming world. Each extreme's impact on air or water quality can be complex and can even vary over the course of the event.


Assuntos
Mudança Climática , Desastres , Qualidade da Água , Tempo (Meteorologia) , Ar , Estados Unidos
15.
Sci Adv ; 9(14): eadf0259, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027466

RESUMO

Several pathways for how climate change may influence the U.S. coastal hurricane risk have been proposed, but the physical mechanisms and possible connections between various pathways remain unclear. Here, future projections of hurricane activity (1980-2100), downscaled from multiple climate models using a synthetic hurricane model, show an enhanced hurricane frequency for the Gulf and lower East coast regions. The increase in coastal hurricane frequency is driven primarily by changes in steering flow, which can be attributed to the development of an upper-level cyclonic circulation over the western Atlantic. The latter is part of the baroclinic stationary Rossby waves forced mainly by increased diabatic heating in the eastern tropical Pacific, a robust signal across the multimodel ensemble. Last, these heating changes also play a key role in decreasing wind shear near the U.S. coast, further aggravating coastal hurricane risk enhanced by the physically connected steering flow changes.

16.
J Clim Chang Health ; 3: 100019, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34235501

RESUMO

The 2020 Atlantic hurricane season was notable for a record-setting 30 named storms while, contemporaneously, the COVID-19 pandemic was circumnavigating the globe. The active spread of COVID-19 complicated disaster preparedness and response actions to safeguard coastal and island populations from hurricane hazards. Major hurricanes Eta and Iota, the most powerful storms of the 2020 Atlantic season, made November landfalls just two weeks apart, both coming ashore along the Miskito Coast in Nicaragua's North Caribbean Coast Autonomous Region. Eta and Iota bore the hallmarks of climate-driven storms, including rapid intensification, high peak wind speeds, and decelerating forward motion prior to landfall. Hurricane warning systems, combined with timely evacuation and sheltering procedures, minimized loss of life during hurricane impact. Yet these protective actions potentially elevated risks for COVID-19 transmission for citizens sharing congregate shelters during the storms and for survivors who were displaced post-impact due to severe damage to their homes and communities. International border closures and travel restrictions that were in force to slow the spread of COVID-19 diminished the scope, timeliness, and effectiveness of the humanitarian response for survivors of Eta and Iota. Taken together, the extreme impacts from hurricanes Eta and Iota, compounded by the ubiquitous threat of COVID-19 transmission, and the impediments to international humanitarian response associated with movement restrictions during the pandemic, acted to exacerbate harms to population health for the citizens of Nicaragua.

17.
Disaster Med Public Health Prep ; 14(4): 494-503, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32660664

RESUMO

The co-occurrence of the 2020 Atlantic hurricane season and the ongoing coronavirus disease 2019 (COVID-19) pandemic creates complex dilemmas for protecting populations from these intersecting threats. Climate change is likely contributing to stronger, wetter, slower-moving, and more dangerous hurricanes. Climate-driven hazards underscore the imperative for timely warning, evacuation, and sheltering of storm-threatened populations - proven life-saving protective measures that gather evacuees together inside durable, enclosed spaces when a hurricane approaches. Meanwhile, the rapid acquisition of scientific knowledge regarding how COVID-19 spreads has guided mass anti-contagion strategies, including lockdowns, sheltering at home, physical distancing, donning personal protective equipment, conscientious handwashing, and hygiene practices. These life-saving strategies, credited with preventing millions of COVID-19 cases, separate and move people apart. Enforcement coupled with fear of contracting COVID-19 have motivated high levels of adherence to these stringent regulations. How will populations react when warned to shelter from an oncoming Atlantic hurricane while COVID-19 is actively circulating in the community? Emergency managers, health care providers, and public health preparedness professionals must create viable solutions to confront these potential scenarios: elevated rates of hurricane-related injury and mortality among persons who refuse to evacuate due to fear of COVID-19, and the resurgence of COVID-19 cases among hurricane evacuees who shelter together.


Assuntos
COVID-19/prevenção & controle , Tempestades Ciclônicas/prevenção & controle , Pandemias/prevenção & controle , Gestão de Riscos/métodos , Oceano Atlântico/epidemiologia , COVID-19/epidemiologia , COVID-19/mortalidade , Mudança Climática , Tempestades Ciclônicas/mortalidade , Tempestades Ciclônicas/estatística & dados numéricos , Abrigo de Emergência/métodos , Abrigo de Emergência/tendências , Humanos , Pandemias/estatística & dados numéricos , Saúde Pública/instrumentação , Saúde Pública/métodos , Saúde Pública/tendências , Gestão de Riscos/normas , Gestão de Riscos/tendências
18.
Health Aff (Millwood) ; 39(12): 2120-2127, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33284702

RESUMO

As climate change alters the behavior of Atlantic hurricanes, these storms are trending stronger, wetter, and slower moving over coastal and island populations. Hurricane Dorian exemplified all three attributes. Dorian's destructive passage over the Abaco Islands, Bahamas, on September 1, 2019, exposed residents of its capital, Marsh Harbour, to a prolonged encounter with the storm's core. After Dorian's fierce front eyewall and towering storm surge tore apart shanty town habitats and eviscerated concrete homesites, residents desperately sought refuge during the brief respite when Dorian's eye passed directly overhead. The category 5 winds then resumed abruptly and Dorian continued its relentless destruction. This article focuses on the storm's mental health consequences, drawing on observations of on-site clinicians as well as findings from previous research on the mental health effects of Atlantic hurricanes and the transformation of hurricane hazards resulting from climate change. To protect island and coastal populations against climate-driven storms, disaster planning policy should emphasize resilience-focused prevention and mitigation strategies. In the aftermath of these events, health system response should include community outreach, case finding, and evidence-based interventions that optimize the use of mental health professionals.


Assuntos
Tempestades Ciclônicas , Planejamento em Desastres , Bahamas , Mudança Climática , Humanos , Saúde Mental
19.
Sci Rep ; 9(1): 7795, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127128

RESUMO

The ocean and atmosphere in the North Atlantic are coupled through a feedback mechanism that excites a dipole pattern in vertical wind shear (VWS), a metric that strongly controls Atlantic hurricanes. In particular, when tropical VWS is under the weakening phase and thus favorable for increased hurricane activity in the Main Development Region (MDR), a protective barrier of high VWS inhibits hurricane intensification along the U.S. East Coast. Here we show that this pattern is driven mostly by natural decadal variability, but that greenhouse gas (GHG) forcing erodes the pattern and degrades the natural barrier along the U.S. coast. Twenty-first century climate model projections show that the increased VWS along the U.S. East Coast during decadal periods of enhanced hurricane activity is substantially reduced by GHG forcing, which allows hurricanes approaching the U.S. coast to intensify more rapidly. The erosion of this natural intensification barrier is especially large following the Representative Concentration Pathway 8.5 (rcp8.5) emission scenario.

20.
Psychiatr Serv ; 70(12): 1165-1167, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401910

RESUMO

Global environmental climate change is altering the behavior of hurricanes. Hurricane seasons are becoming more active, generating storms that are ever more damaging to coastal and island communities. Exposure to hurricane hazards and experiencing resultant losses and life changes can lead to new-onset mental disorders among previously healthy survivors and jeopardize the health of persons with preexisting mental illness. High rates of common mental disorders have been documented after recent hurricanes. As hurricanes become increasingly severe, health care systems may expect to see more mental illness related to these extreme storms. Psychiatrists and allied health professionals can play vital roles in several areas: educating and preparing current caseloads of patients for possible storm impacts; intervening with persons who develop new-onset disorders after storm exposure; providing consultation to public health and community preparedness leadership about the mental health consequences of hurricanes; participating actively in community emergency response; and championing the integration of psychiatry with climate science and advocacy.


Assuntos
Tempestades Ciclônicas/história , Saúde Mental , Psiquiatria/tendências , Saúde Pública , Sobreviventes/psicologia , História do Século XXI , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA