Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Mater Au ; 3(2): 102-111, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089726

RESUMO

A central aim of materials discovery is an accurate and numerically reliable description of thermodynamic properties, such as the enthalpies of formation and decomposition. The r2SCAN revision of the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) balances numerical stability with high general accuracy. To assess the r2SCAN description of solid-state thermodynamics, we evaluate the formation and decomposition enthalpies, equilibrium volumes, and fundamental band gaps of more than 1000 solids using r2SCAN, SCAN, and PBE, as well as two dispersion-corrected variants, SCAN+rVV10 and r2SCAN+rVV10. We show that r2SCAN achieves accuracy comparable to SCAN and often improves upon SCAN's already excellent accuracy. Although SCAN+rVV10 is often observed to worsen the formation enthalpies of SCAN and makes no substantial correction to SCAN's cell volume predictions, r2SCAN+rVV10 predicts marginally less accurate formation enthalpies than r2SCAN, and slightly more accurate cell volumes than r2SCAN. The average absolute errors in predicted formation enthalpies are found to decrease by a factor of 1.5 to 2.5 from the GGA level to the meta-GGA level. Smaller decreases in error are observed for decomposition enthalpies. For formation enthalpies r2SCAN improves over SCAN for intermetallic systems. For a few classes of systems-transition metals, intermetallics, weakly bound solids, and enthalpies of decomposition into compounds-GGAs are comparable to meta-GGAs. In total, r2SCAN and r2SCAN+rVV10 can be recommended as stable, general-purpose meta-GGAs for materials discovery.

2.
Adv Mater ; 34(26): e2200574, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35419882

RESUMO

Here, a new family of 2D transition metal carbo-chalcogenides (TMCCs) is reported, which can be considered a combination of two well-known families, TM carbides (MXenes) and TM dichalcogenides (TMDCs), at the atomic level. Single sheets are successfully obtained from multilayered Nb2 S2 C and Ta2 S2 C using electrochemical lithiation followed by sonication in water. The parent multilayered TMCCs are synthesized using a simple, scalable solid-state synthesis followed by a topochemical reaction. Superconductivity transition is observed at 7.55 K for Nb2 S2 C. The delaminated Nb2 S2 C outperforms both multilayered Nb2 S2 C and delaminated NbS2 as an electrode material for Li-ion batteries. Ab initio calculations predict the elastic constant of TMCC to be over 50% higher than that of TMDC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA