Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Environ Monit Assess ; 195(11): 1269, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792086

RESUMO

Underground coal extraction at Coal Mine Velenje occasionally gives rise to odour complaints from local residents. This manuscript describes a robust quantification of odorous emissions of mine sources and a model-based analysis aimed to establish a better understanding of the sources, concentrations, dispersion, and possible control of odorous compounds during coal extraction process. Major odour sources during underground mining are released volatile sulphur compounds from coal seam that have characteristic malodours at extremely low concentrations at micrograms per cubic metre (µg/m3) levels. Analysis of 1028 gas samples taken over a 6-year period (2008-2013) reveals that dimethyl sulphide ((CH3)2S) is the major odour active compound present in the mine, being detected on 679 occasions throughout the mine, while hydrogen sulphide (H2S) and sulphur dioxide (SO2) were detected 5 and 26 times. Analysis of gas samples has shown that main DMS sources in the mine are coal extraction locations at longwall faces and development headings and that DMS is releasing during transport from main coal transport system. The dispersion simulations of odour sources in the mine have shown that the concentrations of DMS at median levels can represent relatively modest odour nuisance. While at peak levels, the concentration of DMS remained sufficiently high to create an odour problem both in the mine and on the surface. Overall, dispersion simulations have shown that ventilation regulation on its own is not sufficient as an odour abatement measure.


Assuntos
Sulfeto de Hidrogênio , Odorantes , Monitoramento Ambiental , Carvão Mineral
2.
Anal Chem ; 94(23): 8234-8240, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35647905

RESUMO

Atmospheric mercury measurements carried out in the recent decades have been a subject of bias largely due to insufficient consideration of metrological traceability and associated measurement uncertainty, which are ultimately needed for the demonstration of comparability of the measurement results. This is particularly challenging for gaseous HgII species, which are reactive and their ambient concentrations are very low, causing difficulties in proper sampling and calibration. Calibration for atmospheric HgII exists, but barriers to reliable calibration are most evident at ambient HgII concentration levels. We present a calibration of HgII species based on nonthermal plasma oxidation of Hg0 to HgII. Hg0 was produced by quantitative reduction of HgII in aqueous solution by SnCl2 and aeration. The generated Hg0 in a stream of He and traces of reaction gas (O2, Cl2, or Br2) was then oxidized to different HgII species by nonthermal plasma. A highly sensitive 197Hg radiotracer was used to evaluate the oxidation efficiency. Nonthermal plasma oxidation efficiencies with corresponding expanded standard uncertainty values were 100.5 ± 4.7% (k = 2) for 100 pg of HgO, 96.8 ± 7.3% (k = 2) for 250 pg of HgCl2, and 77.3 ± 9.4% (k = 2) for 250 pg of HgBr2. The presence of HgO, HgCl2, and HgBr2 was confirmed by temperature-programmed desorption quadrupole mass spectrometry (TPD-QMS). This work demonstrates the potential for nonthermal plasma oxidation to generate reliable and repeatable amounts of HgII compounds for routine calibration of ambient air measurement instrumentation.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Calibragem , Gases/química , Mercúrio/análise , Oxirredução
3.
Sensors (Basel) ; 21(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916694

RESUMO

Understanding atmospheric mercury chemistry is the key for explaining the biogeochemical cycle of mercury and for improving the predictive capability of computational models. Increased efforts are being made to ensure comparable Hg speciation measurements in the air through establishing metrological traceability. While traceability for elemental mercury has been recently set, this is by no means the case for gaseous oxidized mercury (GOM). Since a calibration unit suitable for traceable GOM calibrations based on evaporation of HgCl2 solution was recently developed, the purpose of our work was to extensively evaluate its performance. A highly specific and sensitive 197Hg radiotracer was used for validation over a wide range of concentrations. By comparing experimental and calculated values, we obtained recoveries for the calibration unit. The average recoveries ranged from 88.5% for 1178 ng m-3 HgCl2 gas concentration to 39.4% for 5.90 ng m-3 HgCl2 gas concentration. The losses were due to the adsorption of oxidized Hg on the inner walls of the calibrator and tubing. An adsorption isotherm was applied to estimate adsorption enthalpy (ΔHads); a ΔHads value of -12.33 kJ mol-1 was obtained, suggesting exothermal adsorption. The results of the calibrator performance evaluation suggest that a newly developed calibration unit is only suitable for concentrations of HgCl2 higher than 1 µg m-3. The concentration dependence of recoveries prevents the system from being used for calibration of instruments for ambient GOM measurements. Moreover, the previously assessed uncertainty of this unit at µg m-3 level (2.0%, k = 2) was re-evaluated by including uncertainty related to recovery and was found to be 4.1%, k = 2. Calibrator performance was also evaluated for HgBr2 gas calibration; the recoveries were much lower for HgBr2 gas than for HgCl2 gas even at a high HgBr2 gas concentration (>1 µg m-3). As HgBr2 is often used as a proxy for various atmospheric HgBr species, the suitability of the unit for such calibration must be further developed.

4.
Environ Monit Assess ; 193(4): 180, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33694002

RESUMO

Studies on the influence of CN on Hg methylation rates in aquatic systems draining gold mining (artisanal and small-scale) communities in Africa are rare. The study assessed the influence of CN on Hg methylation in aquatic sediments of two major river systems draining artisanal and small-scale gold mining (ASGM) communities of the Prestea-Huni Valley district, Southwestern Ghana. The miners extract gold (Au) through exclusive amalgam [Hg-Au] formation or cyanidation of Au-rich Hg-contaminated tailings, or a combination of both techniques. Hg water solubility and probable mercuric compounds in sediments of Hg-contaminated CN-loaded (River Aprepre) and Hg-contaminated non-CN (River Ankobra) aquatic systems within the district were investigated. THg was determined by CV-AAS after HF/HNO3/HCl digestion. MeHg in sediments were extracted with H2SO4/KBr/CuSO4-CH2Cl2; followed by aqueous-phase propylation, preconcentration-on-Tenax, and GC-CV-AFS. River Aprepre showed 4.58-14.83 ngMeHg/g as Hg (1.4-3.7% THg as MeHg), with 241-415 ngTHg/g, and 0.05-0.21 mgCN/kg. For River Ankobra, MeHg ranged 0.24-1.21 ngMeHg/g (0.08-0.35% THg as MeHg) with 162-490 ngTHg/g dw and CN < 0.001 mg/kg. There was positive correlation (r2 = 0.5974; p < 0.01) between MeHg and CN in River Aprepre. The water-soluble fraction of Hg in sediment from both rivers was < 1% of THg. Hg in sediments from River Aprepre were generally more soluble than that from River Ankobra, indicating that Hg in sediments from River Aprepre were potentially more bioavailable for methylation. Accordingly, the presence of CN in Hg-dominated river sediments potentially influences and enhances the solubility and mobility of Hg, resulting in increased Hg methylation rates.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Cianetos , Monitoramento Ambiental , Sedimentos Geológicos , Gana , Mercúrio/análise , Metilação , Rios , Poluentes Químicos da Água/análise
5.
J Environ Sci (China) ; 75: 145-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473280

RESUMO

Microbial transformations of toxic monomethylmercury (MMHg) and dissolved gaseous mercury (DGM) at the lower levels of the marine food web are not well understood, especially in oligotrophic and phosphorus-limited seas. To examine the effects of probable phosphorus limitation (PP-limitation) on relations between mercury (Hg) fractions and microorganisms, we determined the total mercury (THg), total methylated mercury (MeHg), DGM, and microbiological and chemical parameters in the Central Adriatic Sea. Using statistical analysis, we assessed the potential microbial effects on Hg transformations and bioaccumulation. Only in the absence of PP-limitation conditions (NO-PP-limitation) is MeHg significantly related to most chemical and microbial parameters, indicating metabolism-dependent Hg transformations. The heterotrophic activity of low nucleic acid bacteria (abundant in oligotrophic regions) seems responsible for most of Hg methylation under NO-PP-limitation. Under these conditions, DGM is strongly related to microbial fractions and chlorophyll a, indicating biological DGM production, which is probably not metabolically induced, as most of these relations are also observed under PP-limitation. MMHg biomagnification was observed through an increased bioaccumulation factor from microseston to mesozooplankton. Our results indicate that Hg transformations and uptake might be enhanced under NO-PP-limitation conditions, emphasizing their impact on the transfer of Hg to higher trophic levels.


Assuntos
Monitoramento Ambiental , Mercúrio/química , Fósforo/metabolismo , Água do Mar/química , Microbiologia da Água , Poluentes Químicos da Água/química , Fósforo/química , Água do Mar/microbiologia
6.
Ecotoxicology ; 27(10): 1341-1352, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315417

RESUMO

Studies of mercury (Hg) in the Mediterranean Sea have focused on pollution sources, air-sea mercury exchange, abiotic mercury cycling, and seafood. Much less is known about methylmercury (MeHg) concentrations in the lower food web. Zooplankton and small fish were sampled from the neuston layer at both coastal and open sea stations in the Mediterranean Sea during three cruise campaigns undertaken in the fall of 2011 and the summers of 2012 and 2013. Zooplankton and small fish were sorted by morphospecies, and the most abundant taxa (e.g. euphausiids, isopods, hyperiid amphipods) analyzed for methylmercury (MeHg) concentration. Unfiltered water samples were taken during the 2011 and 2012 cruises and analyzed for MeHg concentration. Multiple taxa suggested elevated MeHg concentrations in the Tyrrhenian and Balearic Seas in comparison with more eastern and western stations in the Mediterranean Sea. Spatial variation in zooplankton MeHg concentration is positively correlated with single time point whole water MeHg concentration for euphausiids and mysids and negatively correlated with maximum chlorophyll a concentration for euphausiids, mysids, and "smelt" fish. Taxonomic variation in MeHg concentration appears driven by taxonomic grouping and feeding mode. Euphausiids, due to their abundance, relative larger size, importance as a food source for other fauna, and observed relationship with surface water MeHg are a good candidate biotic group to evaluate for use in monitoring the bioavailability of MeHg for trophic transfer in the Mediterranean and potentially globally.


Assuntos
Monitoramento Ambiental , Cadeia Alimentar , Mercúrio/análise , Poluentes Químicos da Água/análise , Mar Mediterrâneo
7.
Environ Res ; 152: 434-445, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27488273

RESUMO

500 years of mercury (Hg) mining in the town of Idrija has caused severe pollution in Idrija and its surroundings. Following the closure of the mine in 1995, the environment remains contaminated with Hg. Sources of elemental-, inorganic- and methyl Hg exposure were identified, potential environmental level of exposure to Hg was evaluated and actual internal exposure to Hg was assessed in selected susceptible population groups comprising school-age children and pregnant women living in Idrija and in control groups from rural and urban environments. The study of pregnant women (n=31) was conducted between 2003 and 2008, and the study of school-age children (n=176) in 2008. Potential interaction of Hg with selenium (Se) in plasma was assessed in both study populations, while in pregnant women antioxidative enzyme activity (glutathione peroxidase, superoxide dismutase and catalase) in erythrocytes of maternal and cord blood was also assessed. Actual exposure to Hg as indicated by levels of Hg in children's blood (geometric mean (GM) 0.92µg/L), mother's blood (GM 1.86µg/L), children's urine (GM 1.08µg/g crea.), mother's urine (GM 2.51µg/L), children's hair (GM 241ng/g) and mother's hair (GM 251ng/g) was higher in the two study groups from Idrija than in the control groups from rural areas, but was still at the level of a "normal" population and reflects mainly exposure to elemental Hg (Hg°) from dental amalgam and, to a certain extent atmospheric Hg°. Furthermore, the internal doses of Hg received during pregnancy did not decrease the bioavailability of Se. Based on observation in children, the increase in Se protein expression is suggested to be a consequence of moderately elevated exposure to Hg°. The observed changes in activity of antioxidative enzymes, as biomarkers of oxidative stress, appear to be mainly associated with pregnancy per se and not with an increased exposure to Hg. In view of the continuing increased potential for Hg exposure and the low number of pregnant women studied, the results warrant a further longitudinal study of a larger group of pregnant women residing in the area of the former mercury mine.


Assuntos
Antioxidantes/metabolismo , Exposição Ambiental , Poluentes Ambientais/metabolismo , Compostos de Mercúrio/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Selênio/metabolismo , Adulto , Criança , Estudos Transversais , Monitoramento Ambiental , Poluentes Ambientais/análise , Enzimas/metabolismo , Feminino , Contaminação de Alimentos/análise , Humanos , Masculino , Mercúrio/análise , Compostos de Mercúrio/análise , Compostos de Metilmercúrio/análise , Mineração , Gravidez , Eslovênia , Adulto Jovem
8.
Environ Geochem Health ; 36(4): 713-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24379158

RESUMO

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m(-3), that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m(-3)) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m(-3). We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au-Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical-chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , China , Cidades , Coleta de Dados , Europa (Continente) , Mineração , África do Sul , América do Sul , Erupções Vulcânicas
9.
Anal Chim Acta ; 1288: 342168, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220300

RESUMO

BACKGROUND: The current speciation methods for mercury (Hg) measurements are fraught with considerable uncertainty, from sample collection to calibration. High reactivity of gaseous oxidized Hg (GOM) species and their ultra-trace level presence makes them difficult to sample and calibrate. Given that improper calibration may lead to measurement biases, reliable and metrologically traceable calibration methods are required for accurately quantifying GOM in air. In the present study, we applied the recently developed calibration method based on non-thermal plasma oxidation of elemental Hg, to a commercially available Hg air speciation system for actual environmental measurements of GOM for the first time. RESULTS: Hg species such as HgO, HgCl2, and HgBr2 were produced with trace amounts of reactant gases (oxygen and electrolytically produced chlorine and bromine) and the production was driven by plasma-assisted oxidation. The plasma oxidation efficiency of elemental Hg with oxygen was 98.5 ± 7.5 % (k = 2), while that for chlorine and bromine was 96.8 ± 6.9 % (k = 2) and 97.4 ± 9.6 % (k = 2), respectively. The calibration method was tested against the internal permeation (Hg0) source of the Tekran 2537B Hg analyzer on-field by loading HgO to different KCl-coated denuders using the plasma. GOM concentrations were measured using the Tekran speciation system. With internal calibration, concentrations were up to 9.1 % lower than those in plasma calibration, thereby emphasizing the importance of the calibration strategy. Measurement uncertainty (k = 2) further emphasizes this distinction. Internal calibration measurement uncertainty was 36.8 %, while plasma calibration boasted lower uncertainty at 13.8 %. SIGNIFICANCE: The non-thermal plasma calibration strategy, as a unique and discrete calibration method traceable to the NIST SRM 3133 for ambient air GOM measurements, provide a higher level of confidence in the accuracy of GOM measurements with several advantages over other methods. Calibrations at extreme low concentrations (<100 pg) are possible with this method relevant to ambient air GOM concentrations.

10.
Environ Sci Pollut Res Int ; 31(24): 35800-35810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38740686

RESUMO

The number of atmospheric mercury (Hg) monitoring stations is growing globally. However, there are still many regions and locations where Hg monitoring is limited or non-existent. Expansion of the atmospheric Hg monitoring network could be facilitated by the use of cost-effective monitoring methods. As such, biomonitoring and passive monitoring offer a unique alternative to well-established monitoring by active measurements, since they do not require a power supply and require minimal workload to operate. The use of biomonitoring (lichens and mosses) and passive air samplers (PASs) (various designs with synthetic materials) has been reported in the literature, and comparisons with active measurement methods have also been made. However, these studies compared either biomonitoring or PASs (not both) to only one type of active measurement. In our work, we used transplanted (7 sampling sites) and in situ lichens (8 sampling sites) for biomonitoring, two PASs from different producers (3 sampling sites), and two different active measurement types (continuous and discontinuous active measurements, 1 and 8 sampling sites, respectively) to evaluate their effectiveness as monitoring methods. In the 9-month sampling campaign, 3 sampling locations with different characteristics (unpolluted, vicinity of a cement plant, and vicinity of a former Hg mine) were used. The results obtained with lichens and PASs clearly distinguished between sampling locations with different Hg concentrations; using both PASs and lichens together increased the confidence of our observations. The present work shows that biomonitoring and passive sampling can be effectively used to identify areas with elevated atmospheric Hg concentrations. The same can be said for discontinuous active measurements; however, the discrepancy between atmospheric Hg concentrations derived from PASs and discontinuous active measurements should be further investigated in the future.


Assuntos
Poluentes Atmosféricos , Monitoramento Biológico , Monitoramento Ambiental , Líquens , Mercúrio , Líquens/química , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Atmosfera/química
11.
Environ Res ; 125: 103-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23477567

RESUMO

The recent developments in pollutant measurement methods and techniques necessitate improvements in modelling approaches. The models used so far have been based on seasonally averaged data, which is insufficient for making short-term predictions. We have improved the existing modelling tools for pollutant transport and dispersion on three levels. We significantly refined the numerical grid; we used temporally and spatially non-uniform meteorological parameters for predicting pollutant dispersion and transformation processes; we used grid nesting in order to improve the open boundary condition. We worked on a typical contaminated site (The Gulf of Trieste), where mercury poses a significant environmental threat and where an oil-spill is a realistic possibility. By calculating evasion we improved the mass balance of mercury in the Gulf. We demonstrated that the spreading of river plumes under typical wind conditions is different than has so far been indicated by model simulations. We also simulated an oil-spill in real time. The improved modelling approaches and the upgraded models are now suitable for use with the state-of-the-art measurements technology and can represent an important contribution to the decision-making process.


Assuntos
Monitoramento Ambiental/métodos , Mercúrio/análise , Modelos Teóricos , Movimentos da Água , Poluentes Químicos da Água/análise , Itália , Oceanos e Mares , Poluição por Petróleo , Rios , Tempo (Meteorologia)
12.
Environ Res ; 125: 171-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23485359

RESUMO

In this study, seasonal changes of mercury (Hg) species in the highly variable estuary of Soca/Isonzo River (northern Adriatic Sea) were investigated. Samplings were performed on a seasonal basis (September 2009, May, August and October 2010) and Hg species (total Hg, methylmercury (MeHg), dissolved gaseous Hg (DGM)) in waters, sediments and pore waters were determined. In addition, a range of ancillary parameters were measured (salinity, nutrients, organic carbon (OC), nitrogen species). Hg values were interpreted using these parameters and hydrological conditions (river flow, wave height) around the time of sampling. There were no significant changes in Hg load from river to the gulf, compared to previous studies. The load was temporarily higher in May 2010 due to higher river flow. Wave height, through changing hydrostatic pressure, was most likely to cause resuspension of already deposited Hg from the bottom (August 2010). The estuary is a net source of DGM to the atmosphere as suggested by DGM profiles, with salinity, redox potential and organic matter as the most probable controls over its production. MeHg is produced in situ in sediment or in water column, rather than transported by river, as indicated by its correlation with OC of the marine origin. Calculated fluxes for THg and MeHg showed sediment as a source for both the water column. In pore waters, OC in part affects partitioning of both THg and MeHg; however other factors (e.g. sulphide and/or oxyhydroxides precipitation and dissolution) are also probably important.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Estuários , Mercúrio/química , Compostos de Metilmercúrio/metabolismo , Estações do Ano , Poluentes Químicos da Água/química , Carbono/análise , Monitoramento Ambiental/métodos , Mar Mediterrâneo , Mercúrio/análise , Nitrogênio/análise , Salinidade , Eslovênia , Espectrometria de Fluorescência , Movimentos da Água , Poluentes Químicos da Água/análise
13.
Chemosphere ; 309(Pt 1): 136592, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36167212

RESUMO

Bio-monitoring of mercury (Hg) in air using transplanted and in-situ lichens was conducted at three locations in Slovenia: (I) the town of Idrija in the area of the former Hg mine, where Hg contamination is well known; (II) Anhovo, a settlement with a cement production plant, which is a source of Hg contamination, and (III) Pokljuka, a part of a national park. Lichens from Pokljuka were transplanted to different sites and sampled four times-once per season, from January 2020 to February 2021. Lichens were set on tree branches, fences, and under cover, allowing them to be exposed to different environmental conditions (e.g., light and rain). The in-situ lichens were sampled at the beginning and the end of the sampling period. The highest concentrations were in the Idrija area, which was consistent with previous research. Significant mass-dependent fractionation has been observed in transplanted lichens during summer period. The δ202Hg changed from -3.0‰ in winter to -1.0‰ in summer and dropped again to the same value in winter the following year. This trend was observed in all samples, except those from the most polluted Idrija sampling site, which was in the vicinity of the former Hg ore-smelting plant. This was likely due to large amounts of Hg originating from polluted soil close to the former smelting plant with a distinct isotopic fingerprint in this local area. The Δ199Hg in transplanted lichens ranged from -0.5‰ to -0.1‰ and showed no seasonal trends. These findings imply that seasonality, particularly in summer months, may affect the isotopic fractionation of Hg and should be considered in the sampling design and data interpretation. This trend was thus described in lichens for the first time. The mechanism behind such change is not yet fully understood.


Assuntos
Líquens , Mercúrio , Isótopos de Mercúrio/análise , Monitoramento Ambiental , Mercúrio/análise , Fracionamento Químico , Solo , Isótopos
14.
Environ Pollut ; 312: 120057, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36041570

RESUMO

The cement industry is the second largest source of anthropogenic mercury (Hg) emissions in Europe, accounting for 11% of global anthropogenic Hg emissions. The main objective of this study was to examine the influence of Hg emissions from the Salonit Anhovo cement plant on Hg levels measured in the ambient air at Vodarna, 1 km downwind from the flue gas chimney. The findings reveal that the plant raw mill operational status plays an important role in Hg concentrations in the flue gas emitted from the plant. Emitted total gaseous mercury was, on average, higher (49.4 µg/m3) when raw mills were in the direct mode (both raw mills-off) and lower (23.4 µg/m3) in the combined mode (both raw mills-on). The average Hg concentrations in Vodarna were 3.14 ng/m3 for gaseous elemental mercury, 53.7 pg/m3 for gaseous oxidised mercury, and 41.9 pg/m3 for particulate bound mercury for the whole measurement period. Atmospheric Hg speciation in Vodarna, coupled with plant emissions and wind data, has revealed that the total gaseous mercury emitted from the cement plant is clearly related to all Hg species measured in Vodarna. Wind blowing from the northeastern quadrant (mostly NE, ENE) is responsible for the elevated Hg levels in Vodarna, where gaseous oxidised mercury levels are highly linked to the cement plant emissions. However, elevated levels of Hg species in the absence of northeastern winds indicate potential inputs from other unknown local sources as well as inputs from regional and global transport mechanisms.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Indústrias , Mercúrio/análise , Vento
15.
Mar Pollut Bull ; 178: 113644, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35413504

RESUMO

Mercury (Hg) in seawater is subject to interconversions via (photo)chemical and (micro)biological processes that determine the extent of dissolved gaseous mercury (DGM) (re)emission and the production of monomethylmercury. We investigated Hg speciation in the South Atlantic Ocean on a GEOTRACES cruise along a 40°S section between December 2011 and January 2012 (354 samples collected at 24 stations from surface to 5250 m maximum depth). Using statistical analysis, concentrations of methylated mercury (MeHg, geometric mean 35.4 fmol L-1) were related to seawater temperature, salinity, and fluorescence. DGM concentrations (geometric mean 0.17 pmol L-1) were related to water column depth, concentrations of macronutrients and dissolved inorganic carbon (DIC). The first-ever observed linear correlation between DGM and DIC obtained from high-resolution data indicates possible DGM production by organic matter remineralization via biological or dark abiotic reactions. DGM concentrations projected from literature DIC data using the newly discovered DGM-DIC relationship agreed with published DGM observations.


Assuntos
Mercúrio , Poluentes Químicos da Água , Oceano Atlântico , Carbono/análise , Monitoramento Ambiental , Gases , Mercúrio/análise , Poluentes Químicos da Água/análise
16.
Environ Monit Assess ; 181(1-4): 225-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21161678

RESUMO

The study was focused on understanding the mercury contamination caused by a cement plant. Active and passive biomonitoring with epiphytic lichens was combined with other instrumental measurements of mercury emissions, mercury concentrations in raw materials, elemental mercury concentrations in air, quantities of dust deposits, temperatures, precipitation and other measurements from the cement plant's regular monitoring programme. Active biomonitoring with transplanted lichens Pseudevernia furfuracea (L.) Zopf was performed at seven of the most representative sites around the cement plant and one distant reference site for periods of 3, 6 and 12 months. In situ lichens of different species were collected at the beginning of the monitoring period at the same sites. Mercury speciation of the plant exhaust gas showed that the main form of emitted mercury is reactive gaseous mercury Hg²âº, which is specific for cement plants. Elemental mercury in air was measured in different meteorological conditions using a portable mercury detector. Concentrations in air were relatively low (on average below 10 ng m⁻³). In situ lichens showed Hg concentrations comparable to lichens taken from the background area for transplantation, indicating that the local pollution is not severe. Transplanted lichens showed an increase of mercury, especially at one site near the cement plant. A correlation between precipitation and Hg uptake was not found probably due to a rather uniform rainfall in individual periods. Dust deposits did not influence Hg uptake significantly. Lichens vitality was affected over longer biomonitoring periods, probably due to some elements in dust particles, their alkalinity and the influence of other emissions. Mercury uptake measured in vital transplanted lichens was in a good correlation with the working hours (i.e. emitted Hg quantity) of the kiln. The study showed that selected lichens could be used to detect low to moderate Hg emissions from a cement plant and that the biomonitoring procedure could be further standardized and used as part of an environmental monitoring programme.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Líquens/química , Mercúrio/análise , Poluição do Ar/estatística & dados numéricos , Indústria da Construção/estatística & dados numéricos , Eslovênia
17.
Sci Rep ; 9(1): 11626, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406135

RESUMO

Mercury (Hg) and its stable isotope composition were used to determine the sources of Hg in deep-sea sediments of the Mediterranean Sea. Surface and down-core sediment δ202Hg values varied widely between -2.30 and +0.78‰, showed consistently positive values for mass independent fractionation of odd Hg isotopes (with average values of Δ199Hg = +0.10 ± 0.04‰ and Δ201Hg = +0.04 ± 0.02‰) and near-zero Δ200Hg values, indicating either multiple Hg sources or a combination of different Hg isotope fractionating processes before and after sediment deposition. Both mass-dependent and mass-independent fractionation processes influence the isotopic composition of Hg in the Mediterranean Sea. Positive Δ199Hg values are likely the result of enhanced Hg2+ photoreduction in the Mediterranean water column before incorporation of Hg into sediments, while mass-dependent fractionation decreases δ202Hg values due to kinetic isotope fractionation during deposition and mobilization. An isotope mixing model based on mass-dependent and mass-independent fractionation (δ202Hg and Δ199Hg) suggests at least three primary Hg sources of atmospheric deposition in the surface sediments: urban, industrial and global precipitation-derived. Industry is the main source of Hg in Algerian and Western Basin surface sediments and at two sites in the Adriatic Sea, while the urban contribution is most prominent at the Strait of Otranto (MS3) and in Adriatic surface sediments. The contribution from precipitation ranged from 10% in Algerian to 37% in W Basin sediments. Overall, results suggest that atmospheric Hg deposition to Mediterranean surface sediments is dominated by gaseous elemental mercury (58 ± 11%) rather than wet deposition.

18.
J Environ Radioact ; 99(7): 1068-74, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18276047

RESUMO

Vertical profiles of radioactive radon gas ((222)Rn) and dissolved gaseous mercury (DGM) in seawater in the Mediterranean Basin have been measured. They were found in the range 1.7-19.3 Bq m(-3) and 22-200 ng m(-3), respectively, at the bottom and 2.0-20.0 Bq m(-3) and 6-80 ng m(-3), respectively, at the surface. Preliminary results indicate a positive correlation between concentrations of both gases at some locations, but not at others. Further analyses will be performed, after (226)Ra contents in sediment and water have been determined, taking into account environmental parameters such as air and water temperatures, barometric pressure and water flow, in order to better interpret these profiles.


Assuntos
Monitoramento Ambiental/métodos , Mercúrio/análise , Radônio/análise , Água do Mar/análise , Geografia , Mar Mediterrâneo , Poluentes Químicos da Água/análise , Contaminação Radioativa da Água/análise
19.
Chemosphere ; 197: 262-270, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29353676

RESUMO

Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L-1, with inorganic Hg (Hg2+) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L-1) resulting in high THg:DOC and reflecting in high Hg2+ availability for binding particles (partitioning coefficient log Kd up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg0) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg2+ binding to abiotic particles and bioaccumulation and the production of Hg0, features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP.


Assuntos
Sedimentos Geológicos/química , Lagos/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Argentina , Ecossistema , Erupções Vulcânicas/análise
20.
Chemosphere ; 184: 244-252, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601006

RESUMO

The distributions of the total mercury (T-Hg), methylmercury (MeHg), and ethylmercury (EtHg) concentrations in soil and their relationship to chemical composition of the soil and total organic carbon content (TOC, %) were investigated. Core samples were collected from hill slope on the right and left riverbanks of the Idrija River. Former smelting plant is located on the right bank. The T-Hg average in each of the core samples ranged from 0.25 to 1650 mg kg-1. The vertical T-Hg variations in the samples from the left bank showed no significant change with depth. Conversely, the T-Hg varied with depth, with the surface, or layers several centimeters from the surface, tending to show the highest values in the samples from the right bank. Since the right and left bank soils have different chemical compositions, different pathways of mercury delivery into soils were suggested. The MeHg and EtHg concentrations ranged from n.d. (not detected) to 444 µg kg-1 and n.d. to 17.4 µg kg-1, respectively. The vertical variations of MeHg and EtHg were similar to those of TOC, except for the near-surface layers containing TOC greater than 20%. These results suggest that the decomposition of organic matter is closely related to organic mercury formation.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Mineração , Poluentes do Solo/análise , Compostos de Metilmercúrio/análise , Rios/química , Eslovênia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA