Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 89, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918874

RESUMO

Strategies to overcome toxicity and drug resistance caused by chemotherapeutic drugs for targeted therapy against hepatocellular carcinoma (HCC) are urgently needed. Previous studies revealed that high oxidored-nitro domain-containing protein 1(NOR1) expression in HCC was associated with cisplatin (DDP) resistance. Herein, a novel dual-targeting nanocarrier system AR-NADR was generated for the treatment of DDP resistance in HCC. The core of the nanocarrier system is the metal-organic frameworks (MOF) modified with nuclear location sequence (NLS), which loading with DDP and NOR1 shRNA (R). The shell is an A54 peptide inserted into the erythrocyte membrane (AR). Our results show that AR-NADR efficiently internalized by tumor cells due to its specific binding to the A54 receptors that are abundantly expressed on the surface of HCC cells and NLS peptide-mediated nuclear entry. Additionally, DDP is more likely to be released due to the degradation of Ag-MOF in the acidic tumor microenvironment. Moreover, by acting as a vector for gene delivery, AR-NADR effectively inhibits tumor drug resistance by suppressing the expression of NOR1, which induces intracellular DDP accumulation and makes cells sensitive to DDP. Finally, the anti-HCC efficacy and mechanisms of AR-NADR were systematically elucidated by a HepG2/DDP cell model as well as a tumor model. Therefore, AR-NADR constitutes a key strategy to achieve excellent gene silencing and antitumor efficacy, which provides effective gene therapy and precise treatment strategies for cisplatin resistance in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Biomimética , Neoplasias Hepáticas/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Microambiente Tumoral
2.
Adv Sci (Weinh) ; 10(18): e2301361, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075744

RESUMO

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases in the elderly population. Despite significant advances in studies of the pathobiology on AD, there is still no effective treatment. Here, an erythrocyte membrane-camouflaged nanodrug delivery system (TR-ZRA) modified with transferrin receptor aptamers that can be targeted across the blood-brain barrier to ameliorate AD immune environment is established. Based on metal-organic framework (Zn-CA), TR-ZRA is loaded with CD22shRNA plasmid to silence the abnormally high expression molecule CD22 in aging microglia. Most importantly, TR-ZRA can enhance the ability of microglia to phagocytose Aß and alleviate complement activation, which can promote neuronal activity and decrease inflammation level in the AD brain. Moreover, TR-ZRA is also loaded with Aß aptamers, which allow rapid and low-cost monitoring of Aß plaques in vitro. After treatment with TR-ZRA, learning, and memory abilities are enhanced in AD mice. In conclusion, the biomimetic delivery nanosystem TR-ZRA in this study provides a promising strategy and novel immune targets for AD therapy.


Assuntos
Doença de Alzheimer , Idoso , Camundongos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Peptídeos beta-Amiloides/uso terapêutico , Membrana Eritrocítica/metabolismo , Nanomedicina Teranóstica , Encéfalo/metabolismo
3.
Nanoscale ; 15(21): 9457-9476, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161583

RESUMO

A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Membrana Eritrocítica , Antineoplásicos/farmacologia , Doxorrubicina , Neoplasias da Mama/tratamento farmacológico , Imunoterapia , Adjuvantes Imunológicos , DNA , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Front Cell Dev Biol ; 9: 756340, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805165

RESUMO

Lung cancer remains the leading cause of cancer death globally, with lung adenocarcinoma (LUAD) being its most prevalent subtype. Due to the heterogeneity of LUAD, patients given the same treatment regimen may have different responses and clinical outcomes. Therefore, identifying new subtypes of LUAD is important for predicting prognosis and providing personalized treatment for patients. Pyroptosis-related genes play an essential role in anticancer, but there is limited research investigating pyroptosis in LUAD. In this study, 33 pyroptosis gene expression profiles and clinical information were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. By bioinformatics and machine learning analyses, we identified novel subtypes of LUAD based on 10 pyroptosis-related genes and further validated them in the GEO dataset, with machine learning models performing up to an AUC of 1 for classifying in GEO. A web-based tool was established for clinicians to use our clustering model (http://www.aimedicallab.com/tool/aiml-subphe-luad.html). LUAD patients were clustered into 3 subtypes (A, B, and C), and survival analysis showed that B had the best survival outcome and C had the worst survival outcome. The relationships between pyroptosis gene expression and clinical characteristics were further analyzed in the three molecular subtypes. Immune profiling revealed significant differences in immune cell infiltration among the three molecular subtypes. GO enrichment and KEGG pathway analyses were performed based on the differential genes of the three subtypes, indicating that differentially expressed genes (DEGs) were involved in multiple cellular and biological functions, including RNA catabolic process, mRNA catabolic process, and pathways of neurodegeneration-multiple diseases. Finally, we developed an 8-gene prognostic model that accurately predicted 1-, 3-, and 5-year overall survival. In conclusion, pyroptosis-related genes may play a critical role in LUAD, and provide new insights into the underlying mechanisms of LUAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA