Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 17, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183022

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells participated in the development of retinal fibrosis. SB431542 is a small molecule inhibitor with inhibitory effects on the ALK4, ALK5 and ALK7. Our study aimed to explore the effect of SB431542 on the EMT of RPE cells and to provide new ideas for the treatment of retinal fibrosis. METHODS: We performed fundus fluorescein angiography, optical coherence tomography and hematoxylin-eosin staining in vivo to observe the effect of SB431542 on choroidal neovascularization (CNV)-induced retinopathy. The proliferation, migration, cytoskeleton, adhesion, reactive oxygen species (ROS), mitochondrial morphology and membrane potential of RPE cells were observed in vitro through fluorescein diacetate staining, Cell Counting Kit-8 experiment, wound healing assay, phalloidin staining, immunofluorescence, MitoSOX, DCFH-DA, MitoTracker and JC-10 staining. Western blot, reverse transcription quantitative and immunofluorescence were used to detect the expression of EMT-related markers, pERK1/2, pGSK3ß and ß-catenin. RESULTS: SB431542 significantly alleviated retinopathy in the CNV model. The proliferation, migration and adhesion in RPE cells decreased to a certain extent in SB431542 treatment. SB431542 partially normalized the structure of RPE cells. The expression levels of E-cadherin increased, while the expression levels of laminin and N-cadherin decreased with SB431542 treatment. SB431542 reduced the production of total ROS, mitochondrial SOX and recovered the mitochondrial membrane potential to a certain degree. In addition, our study showed that SB431542 downregulated the phosphorylation of ERK1/2, GSK3ß and the expression of ß-catenin. CONCLUSION: SB431542 improved EMT in RPE cells by maintaining mitochondrial homeostasis via the ERK1/2 and GSK3ß/ß-catenin pathways. Video Abstract SB431542 inhibits EMT in RPE cells under high glucose conditions.


Assuntos
Neovascularização de Coroide , Doenças Retinianas , Humanos , beta Catenina , Glicogênio Sintase Quinase 3 beta , Espécies Reativas de Oxigênio , Homeostase , Fibrose , Glucose/toxicidade
2.
Heliyon ; 9(3): e13824, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895361

RESUMO

Mitochondria are important places for the oxidative phosphorylation of glucose and the maintenance of cell oxidation and antioxidant stability. However, mitochondrial dysfunction causes cell dysfunction. Meanwhile, retinal vascular endothelial cell dysfunction may cause vascular inflammation, hemorrhage, angiogenesis, and other manifestations. Our previous studies have shown that Bone morphogenetic protein 4 (BMP4) is an important target for the treatment of retinal neovascularization, but the mechanism remains unclear. Therefore, our study aims to observe the effects of BMP4 on vascular endothelial cells and hopes to provide a new target for diabetic retinopathy. 4-Hydroxynonenal (4HNE), a kind of lipid peroxide, was used to induce the oxidative stress model. Human retinal microvascular endothelial cells (HRMECs) were randomly divided into control, 4HNE, negative control, and siBMP4 groups. Si-BMP4 significantly reduced leukocyte adhesion and 4HNE-induced high ROS level and restored the mitochondrial membrane potential and OCR. This indicates that BMP4 plays an important role in inducing leukocyte adhesion, oxidative stress, and mitochondrial dysfunction. The relationship between BMP4 and retinal vascular endothelial cell dysfunction is preliminarily confirmed by this study. Mitochondrial dysfunction and oxidative stress may be involved in BMP4-mediated retinal vascular endothelial cell dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA