Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Mol Biol ; 103(4-5): 373-389, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32166486

RESUMO

KEY MESSAGE: Even a point mutation in the psaA gene mediates chlorophyll deficiency. The role of the plastid signal may perform the redox state of the compounds on the acceptor-side of PSI. Two extranuclear variegated mutants of sunflower, Var1 and Var33, were investigated. The yellow sectors of both mutants were characterized by an extremely low chlorophyll and carotenoid content, as well as poorly developed, unstacked thylakoid membranes. A full-genome sequencing of the cpDNA revealed mutations in the psaA gene in both Var1 and Var33. The cpDNA from the yellow sectors of Var1 differs from those in the wild type by only a single, non-synonymous substitution (Gly734Glu) in the psaA gene, which encodes a subunit of photosystem (PS) I. In the cpDNA from the yellow sectors of Var33, the single-nucleotide insertion in the psaA gene was revealed, leading to frameshift at the 580 amino acid position. Analysis of the photosynthetic electron transport demonstrated an inhibition of the PSI and PSII activities in the yellow tissues of the mutant plants. It has been suggested that mutations in the psaA gene of both Var1 and Var33 led to the disruption of PSI. Due to the non-functional PSI, photosynthetic electron transport is blocked, which, in turn, leads to photodamage of PSII. These data are confirmed by immunoblotting analysis, which showed a significant reduction in PsbA in the yellow leaf sectors, but not PsaA. The expression of chloroplast and nuclear genes encoding the PSI subunits (psaA, psaB, and PSAN), the PSII subunits (psbA, psbB, and PSBW), the antenna proteins (LHCA1, LHCB1, and LHCB4), the ribulose 1.5-bisphosphate carboxylase subunits (rbcL and RbcS), and enzymes of chlorophyll biosynthesis were down-regulated in the yellow leaf tissue. The extremely reduced transcriptional activity of the two protochlorophyllide oxidoreductase (POR) genes involved in chlorophyll biosynthesis is noteworthy. The disruption of NADPH synthesis, due to the non-functional PSI, probably led to a significant reduction in NADPH-protochlorophyllide oxidoreductase in the yellow sectors of Var1 and Var33. A dramatic decrease in chlorophyllide was shown in the yellow sectors. A reduction in NADPH-protochlorophyllide oxidoreductase, along with photodegradation, has been suggested as a result of chlorophyll deficiency.


Assuntos
Apoproteína(a)/genética , Clorofila A/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Helianthus/genética , Complexo de Proteína do Fotossistema I/metabolismo , Mutação Puntual , Clorofila A/química , DNA de Plantas , Genoma de Planta , Fenótipo , Complexo de Proteína do Fotossistema I/genética , Pigmentação
2.
Genes (Basel) ; 11(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846894

RESUMO

The genus Helianthus is a diverse taxonomic group with approximately 50 species. Most sunflower genomic investigations are devoted to economically valuable species, e.g., H. annuus, while other Helianthus species, especially perennial, are predominantly a blind spot. In the current study, we have assembled the complete mitogenomes of two perennial species: H. grosseserratus (273,543 bp) and H. strumosus (281,055 bp). We analyzed their sequences and gene profiles in comparison to the available complete mitogenomes of H. annuus. Except for sdh4 and trnA-UGC, both perennial sunflower species had the same gene content and almost identical protein-coding sequences when compared with each other and with annual sunflowers (H. annuus). Common mitochondrial open reading frames (ORFs) (orf117, orf139, and orf334) in sunflowers and unique ORFs for H. grosseserratus (orf633) and H. strumosus (orf126, orf184, orf207) were identified. The maintenance of plastid-derived coding sequences in the mitogenomes of both annual and perennial sunflowers and the low frequency of nonsynonymous mutations point at an extremely low variability of mitochondrial DNA (mtDNA) coding sequences in the Helianthus genus.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Genoma Mitocondrial , Genoma de Planta , Helianthus/genética , Proteínas Mitocondriais/genética , DNA Mitocondrial/análise , Genômica , Helianthus/classificação , Filogenia
3.
Data Brief ; 25: 104072, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31211212

RESUMO

Data presents the chloroplast genome sequences of the five sunflower alloplasmic cytoplasmic male sterility (CMS) lines obtained with using the Illumina MiSeq, HiSeq and NextSeq platforms. The sunflower alloplasmic CMS lines has the same nuclear genome from line HA89, but they differ in cytoplasmic genomes, inherited from annual (PET1, PET2 - H. petiolaris, ANN2 - H. annuus) and perennial (MAX1 - H. maximilliani) species of the genus Helianthus L. The chloroplast genomes were annotated. Also presented is a dataset of variable sites such as single nucleotide polymorphism (SNP), simple sequence repeat (SSR), insertion and deletion (INDEL) in the chloroplast genome of the sequenced alloplasmic lines. The raw reads are available in FIGSHARE (https://doi.org/10.6084/m9.figshare.7520183). The complete chloroplast genome sequences for the sunflower alloplasmic lines are available in GenBank NCBI under the accessions MK341448.1-MK341452.1; the remaining data are provided with this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA