Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Immunol ; 22(1): 74-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32999467

RESUMO

T cell immunity is central for the control of viral infections. To characterize T cell immunity, but also for the development of vaccines, identification of exact viral T cell epitopes is fundamental. Here we identify and characterize multiple dominant and subdominant SARS-CoV-2 HLA class I and HLA-DR peptides as potential T cell epitopes in COVID-19 convalescent and unexposed individuals. SARS-CoV-2-specific peptides enabled detection of post-infectious T cell immunity, even in seronegative convalescent individuals. Cross-reactive SARS-CoV-2 peptides revealed pre-existing T cell responses in 81% of unexposed individuals and validated similarity with common cold coronaviruses, providing a functional basis for heterologous immunity in SARS-CoV-2 infection. Diversity of SARS-CoV-2 T cell responses was associated with mild symptoms of COVID-19, providing evidence that immunity requires recognition of multiple epitopes. Together, the proposed SARS-CoV-2 T cell epitopes enable identification of heterologous and post-infectious T cell immunity and facilitate development of diagnostic, preventive and therapeutic measures for COVID-19.


Assuntos
COVID-19/imunologia , Epitopos de Linfócito T/imunologia , Peptídeos/imunologia , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Vacinas Virais/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Reações Cruzadas/imunologia , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Memória Imunológica/imunologia , SARS-CoV-2/fisiologia , Linfócitos T/metabolismo , Vacinas Virais/administração & dosagem
2.
Acta Neuropathol ; 146(2): 173-190, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368072

RESUMO

Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Imunoterapia , Linfócitos T , Neoplasias Meníngeas/terapia
3.
Mol Cell Proteomics ; 20: 100110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34129939

RESUMO

Knowledge about the peptide repertoire presented by human leukocyte antigens (HLA) holds the key to unlock target-specific cancer immunotherapies such as adoptive cell therapies or bispecific T cell engaging receptors. Therefore, comprehensive and accurate characterization of HLA peptidomes by mass spectrometry (immunopeptidomics) across tissues and disease states is essential. With growing numbers of immunopeptidomics datasets and the scope of peptide identification strategies reaching beyond the canonical proteome, the likelihood for erroneous peptide identification as well as false annotation of HLA-independent peptides as HLA ligands is increasing. Such "fake ligands" can lead to selection of nonexistent targets for immunotherapeutic development and need to be recognized as such as early as possible in the preclinical pipeline. Here we present computational and experimental methods that enable the identification of "fake ligands" that might be introduced at different steps of the immunopeptidomics workflow. The statistics presented herein allow discrimination of true HLA ligands from coisolated HLA-independent proteolytic fragments. In addition, we describe necessary steps to ensure system suitability of the chromatographic system. Furthermore, we illustrate an algorithm for detection of source fragmentation events that are introduced by electrospray ionization during mass spectrometry. For confirmation of peptide sequences, we present an experimental pipeline that enables high-throughput sequence verification through similarity of fragmentation pattern and coelution of synthetic isotope-labeled internal standards. Based on these methods, we show the overall high quality of existing datasets but point out limitations and pitfalls critical for individual peptides and how they can be uncovered in order to identify true ligands.


Assuntos
Antígenos HLA , Peptídeos , Humanos , Ligantes , Proteólise , Proteoma , Proteômica
4.
Nat Methods ; 15(5): 363-366, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529017

RESUMO

Ribosome profiling has been used to predict thousands of short open reading frames (sORFs) in eukaryotic cells, but it suffers from substantial levels of noise. PRICE (https://github.com/erhard-lab/price) is a computational method that models experimental noise to enable researchers to accurately resolve overlapping sORFs and noncanonical translation initiation. We experimentally validated translation using major histocompatibility complex class I (MHC I) peptidomics and observed that sORF-derived peptides efficiently enter the MHC I presentation pathway and thus constitute a substantial fraction of the antigen repertoire.


Assuntos
Biologia Computacional , Peptídeos/metabolismo , Proteômica/métodos , Ribossomos/fisiologia , Genes MHC Classe I , Modelos Biológicos , Biossíntese de Proteínas , Pegadas de Proteínas , Software
5.
Blood ; 133(6): 550-565, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530751

RESUMO

Antileukemia immunity plays an important role in disease control and maintenance of tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus, antigen-specific immunotherapy holds promise for strengthening immune control in CML but requires the identification of CML-associated targets. In this study, we used a mass spectrometry-based approach to identify naturally presented HLA class I- and class II-restricted peptides in primary CML samples. Comparative HLA ligandome profiling using a comprehensive dataset of different hematological benign specimens and samples from CML patients in deep molecular remission delineated a panel of novel frequently presented CML-exclusive peptides. These nonmutated target antigens are of particular relevance because our extensive data-mining approach suggests the absence of naturally presented BCR-ABL- and ABL-BCR-derived HLA-restricted peptides and the lack of frequent tumor-exclusive presentation of known cancer/testis and leukemia-associated antigens. Functional characterization revealed spontaneous T-cell responses against the newly identified CML-associated peptides in CML patient samples and their ability to induce multifunctional and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML patients. Thus, these antigens are prime candidates for T-cell-based immunotherapeutic approaches that may prolong TKI-free survival and even mediate cure of CML patients.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Fusão bcr-abl/imunologia , Antígenos HLA/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Linfócitos T Citotóxicos/imunologia , Antígenos de Neoplasias/metabolismo , Epitopos de Linfócito T/metabolismo , Antígenos HLA/metabolismo , Humanos , Imunoterapia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Ligantes
6.
Proc Natl Acad Sci U S A ; 114(46): E9942-E9951, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29093164

RESUMO

Immunotherapies, particularly checkpoint inhibitors, have set off a revolution in cancer therapy by releasing the power of the immune system. However, only little is known about the antigens that are essentially presented on cancer cells, capable of exposing them to immune cells. Large-scale HLA ligandome analysis has enabled us to exhaustively characterize the immunopeptidomic landscape of epithelial ovarian cancers (EOCs). Additional comparative profiling with the immunopeptidome of a variety of benign sources has unveiled a multitude of ovarian cancer antigens (MUC16, MSLN, LGALS1, IDO1, KLK10) to be presented by HLA class I and class II molecules exclusively on ovarian cancer cells. Most strikingly, ligands derived from mucin 16 and mesothelin, a molecular axis of prognostic importance in EOC, are prominent in a majority of patients. Differential gene-expression analysis has allowed us to confirm the relevance of these targets for EOC and further provided important insights into the relationship between gene transcript levels and HLA ligand presentation.


Assuntos
Apresentação de Antígeno/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Antígeno Ca-125/imunologia , Carcinoma Epitelial do Ovário , Feminino , Proteínas Ligadas por GPI/imunologia , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos HLA-DR/imunologia , Antígenos HLA-DR/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Calicreínas/imunologia , Ligantes , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mesotelina , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Vacinação
7.
J Proteome Res ; 18(6): 2666-2675, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31095916

RESUMO

Oncolytic viruses (OVs), known for their cancer-killing characteristics, also overturn tumor-associated defects in antigen presentation through the MHC class I pathway and induce protective neo-antitumor CD8 T cell responses. Nonetheless, whether OVs shape the tumor MHC-I ligandome remains unknown. Here, we investigated if an OV induces the presentation of novel MHC I-bound tumor antigens (termed tumor MHC-I ligands). Using comparative mass spectrometry (MS)-based MHC-I ligandomics, we determined differential tumor MHC-I ligand expression following treatment with oncolytic reovirus in a murine ovarian cancer model. In vitro, we found that reovirus changes the tumor ligandome of cancer cells. Concurrent multiplexed quantitative proteomics revealed that the reovirus-induced changes in tumor MHC-I ligand presentation were mostly independent of their source proteins. In an in vivo model, tumor MHC-I ligands induced by reovirus were detectable not only in tumor tissues but also the spleens (a source of antigen-presenting cells) of tumor-bearing mice. Most importantly, therapy-induced MHC-I ligands stimulated antigen-specific IFNγ responses in antitumor CD8 T cells from mice treated with reovirus. These data show that therapy-induced MHC-I ligands may shape underlying neo-antitumor CD8 T cell responses. As such, they should be considered in strategies promoting the efficacy of OV-based cancer immunotherapies.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Proteômica/métodos , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia , Interferon gama/genética , Interferon gama/imunologia , Ligantes , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Anal Chem ; 91(8): 5106-5115, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30779550

RESUMO

MHC-I peptides are intracellular-cleaved peptides, usually 8-11 amino acids in length, which are presented on the cell surface and facilitate CD8+ T cell responses. Despite the appreciation of CD8+ T-cell antitumor immune responses toward improvement in patient outcomes, the MHC-I peptide ligands that facilitate the response are poorly described. Along these same lines, although many therapies have been recognized for their ability to reinvigorate antitumor CD8+ T-cell responses, whether these therapies alter the MHC-I peptide repertoire has not been fully assessed due to the lack of quantitative strategies. We develop a multiplexing platform for screening therapy-induced MHC-I ligands by employing tandem mass tags (TMTs). We applied this approach to measuring responses to doxorubicin, which is known to promote antitumor CD8+ T-cell responses during its therapeutic administration in cancer patients. Using both in vitro and in vivo systems, we show successful relative quantitation of MHC-I ligands using TMT-based multiplexing and demonstrate that doxorubicin induces MHC-I peptide ligands that are largely derived from mitotic progression and cell-cycle proteins. This high-throughput MHC-I ligand discovery approach may enable further explorations to understand how small molecules and other therapies alter MHC-I ligand presentation that may be harnessed for CD8+ T-cell-based immunotherapies.


Assuntos
Antibióticos Antineoplásicos/análise , Neoplasias do Colo/terapia , Doxorrubicina/análise , Antígenos de Histocompatibilidade Classe I/análise , Linfoma/terapia , Animais , Antibióticos Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Neoplasias do Colo/imunologia , Doxorrubicina/farmacologia , Descoberta de Drogas , Células HCT116 , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia , Ligantes , Linfoma/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Células Tumorais Cultivadas
9.
Proteomics ; 18(12): e1700284, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505699

RESUMO

Immunotherapy is revolutionizing cancer treatment and has shown success in particular for tumors with a high mutational load. These effects have been linked to neoantigens derived from patient-specific mutations. To expand efficacious immunotherapy approaches to the vast majority of tumor types and patient populations carrying only a few mutations and maybe not a single presented neoepitope, it is necessary to expand the target space to non-mutated cancer-associated antigens. Mass spectrometry enables the direct and unbiased discovery and selection of tumor-specific human leukocyte antigen (HLA) peptides that can be used to define targets for immunotherapy. Combining these targets into a warehouse allows for multi-target therapy and accelerated clinical application. For precise personalization aimed at optimally ensuring treatment efficacy and safety, it is necessary to assess the presence of the target on each individual patient's tumor. Here we show how LC-MS paired with gene expression data was used to define mRNA biomarkers currently being used as diagnostic test IMADETECT™ for patient inclusion and personalized target selection within two clinical trials (NCT02876510, NCT03247309). Thus, we present a way how to translate HLA peptide presentation into gene expression thresholds for companion diagnostics in immunotherapy considering the peptide-specific correlation to its encoding mRNA.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos HLA/metabolismo , Imunoterapia , Neoplasias/metabolismo , Fragmentos de Peptídeos/metabolismo , Medicina de Precisão , Proteogenômica/métodos , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/análise , Antígenos de Neoplasias/imunologia , Tomada de Decisões , Epitopos/imunologia , Epitopos/metabolismo , Antígenos HLA/análise , Antígenos HLA/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Espectrometria de Massas/métodos , Neoplasias/imunologia , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/imunologia
10.
Proc Natl Acad Sci U S A ; 112(2): E166-75, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548167

RESUMO

The breakthrough development of clinically effective immune checkpoint inhibitors illustrates the potential of T-cell-based immunotherapy to effectively treat malignancies. A remaining challenge is to increase and guide the specificities of anticancer immune responses, e.g., by therapeutic vaccination or by adoptive T-cell transfer. By analyzing the landscape of naturally presented HLA class I and II ligands of primary chronic lymphocytic leukemia (CLL), we delineated a novel category of tumor-associated T-cell antigens based on their exclusive and frequent representation in the HLA ligandome of leukemic cells. These antigens were validated across different stages and mutational subtypes of CLL and found to be robustly represented in HLA ligandomes of patients undergoing standard chemo-/immunotherapy. We demonstrate specific immune recognition of these antigens exclusively in CLL patients, with the frequencies of representation in CLL ligandomes correlating with the frequencies of immune recognition by patient T cells. Moreover, retrospective survival analysis revealed survival benefits for patients displaying immune responses to these antigens. These results directly imply these nonmutant self-peptides as pathophysiologically relevant tumor antigens and encourages their implementation for cancer immunotherapy.


Assuntos
Antígenos HLA/metabolismo , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Apresentação de Antígeno , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Feminino , Humanos , Imunidade Inata , Ligantes , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia
11.
J Proteome Res ; 16(4): 1806-1816, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28244318

RESUMO

Class I major histocompatibility complex (MHC-I)-bound peptide ligands dictate the activation and specificity of CD8+ T cells and thus are important for devising T-cell immunotherapies. In recent times, advances in mass spectrometry (MS) have enabled the precise identification of these MHC-I peptides, wherein MS spectra are compared against a reference proteome. Unfortunately, matching these spectra to reference proteome databases is hindered by inflated search spaces attributed to a lack of enzyme restriction in the searches, limiting the efficiency with which MHC ligands are discovered. Here we offer a solution to this problem whereby we developed a targeted database search approach and accompanying tool SpectMHC, that is based on a priori-predicted MHC-I peptides. We first validated the approach using MS data from two different allotype-specific immunoprecipitates for the C57BL/6 mouse background. We then developed allotype-specific HLA databases to search previously published MS data sets of human peripheral blood mononuclear cells (PBMCs). This targeted search strategy improved peptide identifications for both mouse and human ligandomes by greater than 2-fold and is superior to traditional "no enzyme" searches of reference proteomes. Our targeted database search promises to uncover otherwise missed novel T-cell epitopes of therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Espectrometria de Massas/métodos , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoterapia , Ligantes , Camundongos , Peptídeos/genética
12.
Mol Cell Proteomics ; 14(12): 3105-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26628741

RESUMO

The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/isolamento & purificação , Membrana Celular/metabolismo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe II/química , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Peptídeos/química , Peptídeos/metabolismo , Proteômica/instrumentação , Proteômica/métodos
13.
J Hepatol ; 65(4): 849-855, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397612

RESUMO

BACKGROUND & AIMS: We report a novel experimental immunotherapeutic approach in a patient with metastatic intrahepatic cholangiocarcinoma. In the 5year course of the disease, the initial tumor mass, two local recurrences and a lung metastasis were surgically removed. Lacking alternative treatment options, aiming at the induction of anti-tumor T cells responses, we initiated a personalized multi-peptide vaccination, based on in-depth analysis of tumor antigens (immunopeptidome) and sequencing. METHODS: Tumors were characterized by immunohistochemistry, next-generation sequencing and mass spectrometry of HLA ligands. RESULTS: Although several tumor-specific neo-epitopes were predicted in silico, none could be validated by mass spectrometry. Instead, a personalized multi-peptide vaccine containing non-mutated tumor-associated epitopes was designed and applied. Immunomonitoring showed vaccine-induced T cell responses to three out of seven peptides administered. The pulmonary metastasis resected after start of vaccination showed strong immune cell infiltration and perforin positivity, in contrast to the previous lesions. The patient remains clinically healthy, without any radiologically detectable tumors since March 2013 and the vaccination is continued. CONCLUSIONS: This remarkable clinical course encourages formal clinical studies on adjuvant personalized peptide vaccination in cholangiocarcinoma. LAY SUMMARY: Metastatic cholangiocarcinomas, cancers that originate from the liver bile ducts, have very limited treatment options and a fatal prognosis. We describe a novel therapeutic approach in such a patient using a personalized multi-peptide vaccine. This vaccine, developed based on the characterization of the patient's tumor, evoked detectable anti-tumor immune responses, associating with long-term tumor-free survival.


Assuntos
Colangiocarcinoma , Neoplasias dos Ductos Biliares , Vacinas Anticâncer , Humanos , Recidiva Local de Neoplasia , Vacinas de Subunidades Antigênicas
15.
Sci Transl Med ; 14(660): eabo6135, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044599

RESUMO

T cell receptor (TCR)-based immunotherapy has emerged as a promising therapeutic approach for the treatment of patients with solid cancers. Identifying peptide-human leukocyte antigen (pHLA) complexes highly presented on tumors and rarely expressed on healthy tissue in combination with high-affinity TCRs that when introduced into T cells can redirect T cells to eliminate tumor but not healthy tissue is a key requirement for safe and efficacious TCR-based therapies. To discover promising shared tumor antigens that could be targeted via TCR-based adoptive T cell therapy, we employed population-scale immunopeptidomics using quantitative mass spectrometry across ~1500 tumor and normal tissue samples. We identified an HLA-A*02:01-restricted pan-cancer epitope within the collagen type VI α-3 (COL6A3) gene that is highly presented on tumor stroma across multiple solid cancers due to a tumor-specific alternative splicing event that rarely occurs outside the tumor microenvironment. T cells expressing natural COL6A3-specific TCRs demonstrated only modest activity against cells presenting high copy numbers of COL6A3 pHLAs. One of these TCRs was affinity-enhanced, enabling transduced T cells to specifically eliminate tumors in vivo that expressed similar copy numbers of pHLAs as primary tumor specimens. The enhanced TCR variants exhibited a favorable safety profile with no detectable off-target reactivity, paving the way to initiate clinical trials using COL6A3-specific TCRs to target an array of solid tumors.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Linfócitos T , Antígenos de Neoplasias , Linhagem Celular Tumoral , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva/métodos , Proteômica , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/uso terapêutico
16.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869419

RESUMO

In healthy individuals, immune control of persistent human cytomegalovirus (HCMV) infection is effectively mediated by virus-specific CD4+ and CD8+ T cells. However, identifying the repertoire of T cell specificities for HCMV is hampered by the immense protein coding capacity of this betaherpesvirus. Here, we present a novel approach that employs HCMV deletion mutant viruses lacking HLA class I immunoevasins and allows direct identification of naturally presented HCMV-derived HLA ligands by mass spectrometry. We identified 368 unique HCMV-derived HLA class I ligands representing an unexpectedly broad panel of 123 HCMV antigens. Functional characterization revealed memory T cell responses in seropositive individuals for a substantial proportion (28%) of these novel peptides. Multiple HCMV-directed specificities in the memory T cell pool of single individuals indicate that physiologic anti-HCMV T cell responses are directed against a broad range of antigens. Thus, the unbiased identification of naturally presented viral epitopes enabled a comprehensive and systematic assessment of the physiological repertoire of anti-HCMV T cell specificities in seropositive individuals.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Humanos , Memória Imunológica/imunologia
17.
Genome Med ; 12(1): 32, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228647

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the dominant subtype of renal cancer. With currently available therapies, cure of advanced and metastatic ccRCC is achieved only in rare cases. Here, we developed a workflow integrating different -omics technologies to identify ccRCC-specific HLA-presented peptides as potential drug targets for ccRCC immunotherapy. METHODS: We analyzed HLA-presented peptides by MS-based ligandomics of 55 ccRCC tumors (cohort 1), paired non-tumor renal tissues, and 158 benign tissues from other organs. Pathways enriched in ccRCC compared to its cell type of origin were identified by transcriptome and gene set enrichment analyses in 51 tumor tissues of the same cohort. To retrieve a list of candidate targets with involvement in ccRCC pathogenesis, ccRCC-specific pathway genes were intersected with the source genes of tumor-exclusive peptides. The candidates were validated in an independent cohort from The Cancer Genome Atlas (TCGA KIRC, n = 452). DNA methylation (TCGA KIRC, n = 273), somatic mutations (TCGA KIRC, n = 392), and gene ontology (GO) and correlations with tumor metabolites (cohort 1, n = 30) and immune-oncological markers (cohort 1, n = 37) were analyzed to characterize regulatory and functional involvements. CD8+ T cell priming assays were used to identify immunogenic peptides. The candidate gene EGLN3 was functionally investigated in cell culture. RESULTS: A total of 34,226 HLA class I- and 19,325 class II-presented peptides were identified in ccRCC tissue, of which 443 class I and 203 class II peptides were ccRCC-specific and presented in ≥ 3 tumors. One hundred eighty-five of the 499 corresponding source genes were involved in pathways activated by ccRCC tumors. After validation in the independent cohort from TCGA, 113 final candidate genes remained. Candidates were involved in extracellular matrix organization, hypoxic signaling, immune processes, and others. Nine of the 12 peptides assessed by immunogenicity analysis were able to activate naïve CD8+ T cells, including peptides derived from EGLN3. Functional analysis of EGLN3 revealed possible tumor-promoting functions. CONCLUSIONS: Integration of HLA ligandomics, transcriptomics, genetic, and epigenetic data leads to the identification of novel functionally relevant therapeutic targets for ccRCC immunotherapy. Validation of the identified targets is recommended to expand the treatment landscape of ccRCC.


Assuntos
Carcinoma de Células Renais/imunologia , Genômica/métodos , Antígenos HLA/imunologia , Imunoterapia/métodos , Neoplasias Renais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Feminino , Antígenos HLA/química , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/imunologia , Rim/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/terapia , Ligantes , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Mutação , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Transcriptoma
18.
Methods Mol Biol ; 1988: 123-136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147937

RESUMO

The large-scale and in-depth identification of MHC class I- and II-presented peptides is indispensable for gaining insight into the fundamental rules of immune recognition as well as for developing innovative immunotherapeutic approaches against cancer and other diseases. In this chapter we briefly review the existing strategies for the isolation of MHC-restricted peptides and provide a detailed protocol for the immunoaffinity purification of MHC class I- and II-presented peptides from primary tissues or cells.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/isolamento & purificação , Antígenos de Histocompatibilidade Classe I/isolamento & purificação , Biologia Molecular/métodos , Cromatografia de Afinidade , Cromatografia Líquida , Humanos , Ligantes , Peptídeos/metabolismo , Espectrometria de Massas em Tandem
19.
Front Immunol ; 10: 2526, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803175

RESUMO

Background: Radiofrequency ablation (RFA) is an established treatment option for malignancies located in the liver. RFA-induced irreversible coagulation necrosis leads to the release of danger signals and cellular content. Hence, RFA may constitute an endogenous in situ tumor vaccination, stimulating innate and adaptive immune responses, including tumor-antigen specific T cells. This may explain a phenomenon termed abscopal effect, namely tumor regression in untreated lesions evidenced after distant thermal ablation or irradiation. In this study, we therefore assessed systemic and local immune responses in individual patients treated with RFA. Methods: For this prospective clinical trial, patients with liver metastasis from colorectal carcinoma (mCRC) receiving RFA and undergoing metachronous liver surgery for another lesion were recruited (n = 9) during a 5-year period. Tumor and non-malignant liver tissue samples from six patients were investigated by whole transcriptome sequencing and tandem-mass spectrometry, characterizing naturally presented HLA ligands. Tumor antigen-derived HLA-restricted peptides were selected by different predefined approaches. Further, candidate HLA ligands were manually curated. Peripheral blood mononuclear cells were stimulated in vitro with epitope candidate peptides, and functional T cell responses were assessed by intracellular cytokine staining. Immunohistochemical markers were additionally investigated in surgically resected mCRC from patients treated with (n = 9) or without RFA (n = 7). Results: In all six investigated patients, either induced immune responses and/or pre-existing T cell immunity against the selected targets were observed. Multi-cytokine responses were inter alia directed against known tumor antigens such as cyclin D1 but also against a (predicted) mutation contained in ERBB3. Immunohistochemistry did not show a relevant influx of immune cells into distant malignant lesions after RFA treatment (n = 9) as compared to the surgery only mCRC group (n = 7). Conclusions: Using an individualized approach for target selection, RFA induced and/or boosted T cell responses specific for individual tumor antigens were more frequently detectable as compared to previously published observations with well-characterized tumor antigens. However, the witnessed modest RFA-induced immunological effects alone may not be sufficient for the rejection of established tumors. Therefore, these findings warrant further clinical investigation including the assessment of RFA combination therapies e.g., with immune stimulatory agents, cancer vaccination, and/or immune checkpoint inhibitors.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Imunidade , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Idoso , Ablação por Cateter/métodos , Cromatografia Líquida , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Humanos , Imunidade/genética , Imunofenotipagem , Ligantes , Neoplasias Hepáticas/cirurgia , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Proteômica/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Espectrometria de Massas em Tandem , Resultado do Tratamento , Sequenciamento do Exoma
20.
Genome Med ; 11(1): 28, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039795

RESUMO

BACKGROUND: Although mutated HLA ligands are considered ideal cancer-specific immunotherapy targets, evidence for their presentation is lacking in hepatocellular carcinomas (HCCs). Employing a unique multi-omics approach comprising a neoepitope identification pipeline, we assessed exome-derived mutations naturally presented as HLA class I ligands in HCCs. METHODS: In-depth multi-omics analyses included whole exome and transcriptome sequencing to define individual patient-specific search spaces of neoepitope candidates. Evidence for the natural presentation of mutated HLA ligands was investigated through an in silico pipeline integrating proteome and HLA ligandome profiling data. RESULTS: The approach was successfully validated in a state-of-the-art dataset from malignant melanoma, and despite multi-omics evidence for somatic mutations, mutated naturally presented HLA ligands remained elusive in HCCs. An analysis of extensive cancer datasets confirmed fundamental differences of tumor mutational burden in HCC and malignant melanoma, challenging the notion that exome-derived mutations contribute relevantly to the expectable neoepitope pool in malignancies with only few mutations. CONCLUSIONS: This study suggests that exome-derived mutated HLA ligands appear to be rarely presented in HCCs, inter alia resulting from a low mutational burden as compared to other malignancies such as malignant melanoma. Our results therefore demand widening the target scope for personalized immunotherapy beyond this limited range of mutated neoepitopes, particularly for malignancies with similar or lower mutational burden.


Assuntos
Antígenos de Neoplasias/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/metabolismo , Carcinoma Hepatocelular/imunologia , Exoma , Feminino , Genômica/métodos , Humanos , Neoplasias Hepáticas/imunologia , Masculino , Pessoa de Meia-Idade , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA