Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9014-9025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38723621

RESUMO

Electron-coupled-proton buffers (ECPBs) store and deliver protons and electrons in a reversible fashion. We have recently reported an ECPB based on Cu and a redox-active ligand that promoted 4H+/4e- reversible transformations (J. Am. Chem. Soc. 2022, 144, 16905). Herein, we report a series of Cu-based ECPBs in which the ability of these to accept and/or donate H• equivalents can be tuned via ligand modification. The thermochemistry of the 4H+/4e- ECPB equilibrium was determined using open-circuit potential measurements. The reactivity of the ECPBs against proton-coupled electron transfer (PCET) reagents was also analyzed, and the results obtained were rationalized based on the thermochemical parameters. Experimental and computational analysis of the thermochemistry of the H+/e- transfers involved in the 4H+/4e- ECPB transformations found substantial differences between the stepwise (namely, BDFE1, BDFE2, BDFE3, and BDFE4) and average bond dissociation free energy values (BDFEavg.). Our analysis suggests that this "redox unleveling" is critical to promoting the disproportionation and ligand-exchange reactions involved in the 4H+/4e- ECPB equilibria. The difference in BDFEavg. within the series of Cu-based ECPBs was found to arise from a substantial change in the redox potential (E1/2) upon modification of the ligand scaffold, which is not fully compensated for by a change in the acidity/basicity (pKa), suggesting "thermochemical decompensation".

2.
Chemistry ; 29(38): e202300477, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038277

RESUMO

A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α-linked thiophene-3-ester and furan-3-ester repeat units, and was prepared in a single step using Suzuki-Miyaura cross-coupling of a 2-(thiophen-2-yl)furan monomer. The ester side groups help promote a syn conformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5 resulted in formation of the [C4TE4FE]2+ dication. Computational work, paired with 1 H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2e- oxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from 1 H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan-based macrocycles to tune electronic properties.


Assuntos
Furanos , Tiofenos , Tiofenos/química , Conformação Molecular , Oxirredução , Furanos/química , Ésteres
3.
J Org Chem ; 87(23): 15732-15743, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36383039

RESUMO

Herein, a synthetic method was developed to prepare a series of tris(dialkylamino)sulfonium and sulfoxonium cations from sulfur monochloride. Alkaline stability studies of these two cation families in 2 M KOH/CD3OH solution at 80 °C revealed how degradation pathways change as a function of the oxidation state of the S center, as determined by 1H NMR spectroscopy. The sulfonium cations (+S(NR2)3) typically degrade by nucleophilic attack at the sulfur atom with loss of an amino group and a proton transfer reaction to produce sulfoxides, while the sulfoxoniums (+O═S(NR2)3) tend to degrade by loss of an R group to form sulfoximines. From the group of sulfoniums and sulfoxoniums explored in this work, the tris(piperidino)sulfoxonium cation was noted to have excellent alkaline stability. This sulfoxonium should be suitable for future examination as a tethered cation in anion-exchange membranes (AEMs), or as a phase-transfer catalyst in biphasic reactions.


Assuntos
Enxofre , Humanos , Cátions , Ânions , Espectroscopia de Ressonância Magnética , Catálise
4.
Biomacromolecules ; 22(7): 3084-3098, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34151565

RESUMO

Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications.


Assuntos
Hidrogéis , Tecido Nervoso , Condutividade Elétrica , Polímeros , Engenharia Tecidual
5.
J Am Chem Soc ; 141(22): 8858-8867, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31038941

RESUMO

This report describes the design and synthesis of a new class of polyfurans bearing ester side chains. The macromolecules can be synthesized using catalyst-transfer polycondensation, providing precise control over molecular weight and molecular weight distribution. Such obtained furan ester polymers are significantly more photostable than their alkyl analogues owing to the electron-withdrawing nature of the attached subunit. Most interestingly, they spontaneously fold into a compact π-stacked helix, yielding a complex multilayer cylindrical nanoparticle with a hollow, rigid, conjugated core composed of the polyfuran backbone and a soft, insulating outer layer formed by the ester side chains. The length of polymer side chains dictates the outer diameter of such nanoparticles, which for the hexyl ester groups used in the present study is equal to ∼2.3 nm. The inner cavity of the conjugated core is lined with oxygen atoms, which set its effective diameter to 0.4 nm. Furthermore, installation of bulkier, branched chiral ester side chains on the repeat unit yields structures that, upon change of solvent, can reversibly transition between an ordered chiral helical folded and disordered unfolded state.

6.
Macromol Rapid Commun ; 40(10): e1800876, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30740812

RESUMO

Soft, elastomeric, non-tacky polymer networks are synthesized by reversible deactivation radical polymerization (RDRP). First, the pristine, structurally tailored and engineered macromolecular (STEM) networks are synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and incorporated an atom transfer radical polymerization (ATRP) inimer into the network. Subsequently, poly(n-butyl acrylate) (PBA) and/or poly(octafluoropentyl acrylate) (POFPA) side chains are grafted from the network by photo-induced ATRP. These low glass transition temperature side chains produced soft materials (E = 104-178 kPa). However, only the POFPA-containing networks are also non-tacky. The fluorine content and material properties are investigated by dynamic mechanical analysis, elemental analysis, spectroscopy, and contact angle measurements.


Assuntos
Acrilatos/química , Materiais Biocompatíveis/química , Polimerização , Polímeros/síntese química , Materiais Biocompatíveis/síntese química , Elasticidade , Estrutura Molecular , Polímeros/química , Engenharia de Proteínas
7.
Biomacromolecules ; 19(11): 4147-4167, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230317

RESUMO

Materials for the treatment of cancer have been studied comprehensively over the past few decades. Among the various kinds of biomaterials, polymer-based nanomaterials represent one of the most interesting research directions in nanomedicine because their controlled synthesis and tailored designs make it possible to obtain nanostructures with biomimetic features and outstanding biocompatibility. Understanding the chemical and physical mechanisms behind the cascading stimuli-responsiveness of smart polymers is fundamental for the design of multifunctional nanomaterials to be used as photothermal agents for targeted polytherapy. In this review, we offer an in-depth overview of the recent advances in polymer nanomaterials for photothermal therapy, describing the features of three different types of polymer-based nanomaterials. In each case, we systematically show the relevant benefits, highlighting the strategies for developing light-controlled multifunctional nanoplatforms that are responsive in a cascade manner and addressing the open issues by means of an inclusive state-of-the-art review. Moreover, we face further challenges and provide new perspectives for future strategies for developing novel polymeric nanomaterials for photothermally assisted therapies.


Assuntos
Hipertermia Induzida , Nanomedicina/métodos , Nanoestruturas/química , Neoplasias/terapia , Fototerapia , Polímeros/química , Terapia Combinada , Humanos
8.
J Am Chem Soc ; 139(37): 12931-12934, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28885020

RESUMO

An aqueous-based approach for the scalable synthesis of nitrogen-doped porous carbons with high specific surface area (SSA) and high nitrogen content is presented. Low molecular weight polyacrylonitrile (PAN) is solubilized in water in the presence of ZnCl2 that also acts as a volatile porogen during PAN pyrolysis to form mesoporous structures with significantly increased SSA. By templating with commercial SiO2 nanoparticles, nanocellulose fillers or filter paper, nanocarbons with SSA = 1776, 1366, and 1501 m2/g, respectively and 10 wt % N content were prepared. The materials formed by this benign process showed excellent catalytic activity in oxygen reduction reaction via the four-electron mechanism.

9.
J Am Chem Soc ; 138(21): 6798-804, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27104362

RESUMO

Periodic π-conjugated polymers of the group 16 heterocycles (furan, thiophene, and selenophene) were synthesized with controlled chain lengths and relatively low dispersities using catalyst-transfer polycondensation. The optical gap and redox potentials of these copolymers were fine-tuned by altering the heterocycle sequence, and atomic force microscopy revealed nanofibrillar morphologies for all the materials. Grazing incidence wide-angle X-ray scattering of the thiophene-selenophene copolymers indicated that the π-stacking distance increased with incorporation of the larger heteroatom (from ∼3.7-4.0 Å), while the lamellar spacing decreased (from ∼15.8-15.2 Å). The study also revealed that periodic sequences allow electronic properties to be tuned while retaining nanofibrillar morphologies similar to those observed for poly(3-hexylthiophene).

10.
Nat Mater ; 18(11): 1154-1155, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31548632
11.
Macromol Rapid Commun ; 36(9): 840-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25757046

RESUMO

A commercially available palladium N-heterocyclic carbene (Pd-NHC) precatalyst is used to initiate chain-growth polymerization of 2-bromo-3-hexyl-5-trimethylstannylthiophene. The molecular weight of the resultant poly(3-hexylthiophene) can be modulated (7 to 73 kDa, D = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and (1)H NMR spectroscopy reveals that the palladium catalyst is capable of "ring-walking". A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X-ray scattering verify the regioregular nature of the resultant polythiophene.


Assuntos
Paládio/química , Tiofenos/química , Tiofenos/síntese química , Catálise , Espectroscopia de Ressonância Magnética
12.
Soft Matter ; 10(9): 1374-83, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652523

RESUMO

Using a multi-scale computational approach, we determine the effect of introducing a small fraction of high-strength connections between cross-linked nanoparticles. The nanoparticles' rigid cores are decorated with a corona of grafted polymers, which contain reactive functional groups at the chain ends. With the overlap of neighboring coronas, these reactive groups can form weak labile bonds, which can reform after breakage, or stronger bonds, which rupture irreversibly and thus, the nanoparticles are interconnected by dual cross-links. We show that this network can be reinforced by the addition of high-strength connections, which model polymer arms bound together by bonds with energies on the order of 100 kBT. We demonstrate that in the course of these simulations, these high-strength connections can be treated as unbreakable chains. By subjecting networks with a random distribution of the unbreakable chains to tensile deformation at a constant strain-rate, we determine the distribution of strain at break and toughness. With even a small amount of unbreakable chains, the nanoparticle networks can survive strains far greater than the networks without these connections. Furthermore, networks containing the high-strength connections tend to form long, thin threads, which enable a larger strain at break. The findings provide guidelines for creating polymer grafted nanoparticles networks that could show remarkable strength and ductility.


Assuntos
Simulação por Computador , Nanopartículas/química , Polímeros/química , Modelos Químicos , Resistência à Tração
13.
Angew Chem Int Ed Engl ; 53(15): 3957-60, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24596246

RESUMO

A facile templated synthesis of functional nanocarbon materials with well-defined spherical mesopores is developed using all-organic porogenic precursors comprised of hairy nanoparticles with nitrogen-rich polyacrylonitrile shells grafted from sacrificial cross-linked poly(methyl methacrylate) cores (xPMMA-g-PAN). Such shape-persistent all-organic nanostructured precursors, prepared using atom transfer radical polymerization (ATRP), assure robust formation of template nanostructures with continuous PAN precursor matrix over wide range of compositions, and allow for removal of the sacrificial template through simple thermal decomposition. Carbon materials prepared using this method combine nitrogen enrichment with hierarchical nanostructure comprised of microporous carbon matrix interspersed with mesopores originating from sacrificial xPMMA cores, and thus perform well as CO2 adsorbents and as supercapacitor electrodes.

14.
Angew Chem Int Ed Engl ; 53(31): 8050-5, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25044628

RESUMO

We demonstrate a simple bioconjugate polymer system that undergoes reversible self-assembling into extended fibrous structures, reminiscent of those observed in living systems. It is comprised of green fluorescent protein (GFP) molecules linked into linear oligomeric strands through click step growth polymerization with dialkyne poly(ethylene oxide) (PEO). Confocal microscopy, atomic force microscopy, and dynamic light scattering revealed that such strands form high persistence length fibers, with lengths reaching tens of micrometers, and uniform, sub-100 nm widths. We ascribe this remarkable and robust form of self-assembly to the cooperativity arising from the known tendency of GFP molecules to dimerize through localized hydrophobic patches and from their covalent pre-linking with flexible PEO. Dissipative particle dynamics simulations of a coarse-grained model of the system revealed its tendency to form elongated fibrous aggregates, suggesting the general nature of this mode of self-assembly.


Assuntos
Proteínas/química , Microscopia de Força Atômica , Microscopia Confocal , Conformação Proteica
15.
Macromolecules ; 57(11): 5368-5379, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882197

RESUMO

Topology significantly impacts polymer properties and applications. Hyperbranched polymers (HBPs) synthesized via atom transfer radical polymerization (ATRP) using inimers typically exhibit broad molecular weight distributions and limited control over branching. Alternatively, copolymerization of inibramers (IB), such as α-chloro/bromo acrylates with vinyl monomers, yields HBPs with precise and uniform branching. Herein, we described the synthesis of hydrophilic HB polyacrylates in water by copolymerizing a water-soluble IB, oligo(ethylene oxide) methyl ether 2-bromoacrylate (OEOBA), with various hydrophilic acrylate comonomers. Visible-light-mediated controlled radical branching polymerization (CRBP) with dual catalysis using eosin Y (EY) and copper complexes resulted in HBPs with various molecular weights (M n = 38 000 to 170 000) and degrees of branching (2%-24%). Furthermore, the optimized conditions enabled the successful application of the OEOBA to synthesize linear-hyperbranched block copolymers and hyperbranched polymer protein hybrids (HB-PPH), demonstrating its potential to advance the synthesis of complex macromolecular architecture under environmentally benign conditions. Copolymerization of hydrophilic methacrylate monomer, oligo(ethylene oxide) methyl ether methacrylate (OEOMA500), and inibramer OEOBA was accompanied by fragmentation via ß-carbon C-C bond scission and subsequent growth of polymer chains from the fragments. Furthermore, computational studies investigating the fragmentation depending on the IB and comonomer structure supported the experimental observations. This work expands the toolkit of water-soluble inibramers for CRBP and highlights the critical influence of the inibramer structure on reaction outcomes.

16.
ACS Appl Energy Mater ; 7(4): 1517-1526, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425379

RESUMO

Herein, we systematically examined how composition influenced the properties of vinyl addition polynorbornene anion exchange membranes (AEMs) prepared from 5-n-hexyl-2-norbornene and 5-(4-bromobutyl)-2-norbornene. Copolymerization kinetics revealed that 5-n-hexyl-2-norbornene is consumed faster than 5-(4-bromobutyl)-2-norbornene, leading to a portion of the chain being richer in bromoalkyl groups. The alkyl halide pendants can then be converted to either trimethylammonium or tetrakis(dialkylamino)phosphonium cations through straightforward substitution with trimethylamine or a tris(dialkylamino)phosphazene. A series of cationic ammonium polymers were synthesized first, where conductivity and water uptake increased as a function of increasing ionic content in the polymer. The optimized copolymer had a hydroxide conductivity of 95 ± 6 mS/cm at 80 °C. The living polymerization of the two monomers catalyzed by a cationic tert-butylphosphine palladium catalyst also enabled precise changes in the molecular weight while keeping the functional group concentration constant. Molecular weight did not have a significant impact on hydroxide conductivity over the range of ∼60-190 kg/mol (Mn). The optimized tetraaminophosphonium AEM had the highest conductivity for any tetraaminophosphonium polymer to date (70 ± 3 mS/cm at 80 °C). Clear phase separation and larger domains were observed for the phosphonium-based AEM compared to the ammonium at an identical composition, which is attributed to the larger occupied volume of the phosphorus cation. Fuel cell studies with the two membranes resulted in peak power densities of 1.59 and 0.79 W/cm2 for the ammonium and tetraaminophosphonium membrane electrode assemblies, respectively. The ammonium-based membrane was more water permeable as evidenced by water limiting current studies, which likely contributed to the improved performance.

17.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772088

RESUMO

The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most popular water models, all of which take into account electrostatic interactions, are tested and compared based on yielded results and resources required. Three different conditions were simulated: a freely moving particle and one in a potential force field with two different strengths based on 1 pN/nm and 10 pN/nm. In all cases, the diameter of the colloidal particle was 50 nm. The acquired data were compared with experimental measurements performed using optical tweezers with position capture rates as high as 125 MHz. The experiments were performed in pure water on polystyrene particles with a 1 µm diameter in special microchannel cells.

18.
J Am Chem Soc ; 134(36): 14846-57, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22946705

RESUMO

Novel nanoporous nitrogen-enriched carbon materials were prepared through a simple carbonization procedure of well-defined block copolymer precursors containing the source of carbon, i.e., polyacrylonitrile (PAN), and a sacrificial block, i.e., poly(n-butyl acrylate) (PBA). The preparation of nitrogen-enriched nanocarbons with hierarchical pore structure was enabled by the high fidelity preservation of the initial phase-separated nanostructure between two polymer blocks upon carbonization. Supercapacitors fabricated from the prepared carbons exhibited unusually high capacitance per unit surface area (>30 µF/cm(2)) which was attributed to the pseudocapacitance resulting from the high nitrogen content originating from the PAN precursor. Electrochemical availability of the nitrogen species was also evident from the results of oxygen reduction experiments. The hierarchical pore structure and the high nitrogen content in such materials make them particularly promising for use in supercapacitor and electrocatalyst applications.


Assuntos
Acrilatos/síntese química , Resinas Acrílicas/síntese química , Carbono/química , Técnicas Eletroquímicas , Nanoestruturas/química , Nitrogênio/química , Polímeros/síntese química , Acrilatos/química , Resinas Acrílicas/química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Polímeros/química , Porosidade , Propriedades de Superfície
19.
Polymers (Basel) ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745946

RESUMO

Geotextiles are used for separation, drainage, filtration and anti-erosion protection sealing, as well as to improve plant vegetation conditions. The research objective of this study was to verify the influence of the addition of poultry feathers on accelerating the biodegradation of nonwovens in cultivated soil. The tests were carried out in laboratory conditions and were based on the assessment of weight loss. The experiments confirmed the positive effects of the presence of waste that was rich in keratin on the time required for the biodegradation of the tested materials (the period of biodegradation was 8-24 weeks). Additionally, the influence of the biodegradation of the tested materials on the ecotoxicity was investigated and showed no negative effects on the microbiological activity (106 cfu). The research also included the determination of the carbon to nitrogen ratio of the test medium (blank, 12-14:1; with feather addition, 19-20:1). A statistical analysis revealed a correlation between the mechanical properties and the period of biological decomposition. This research was an important step for the management of poultry feather waste in agricultural applications. The tested materials could be seen an alternative that meets all ecological criteria, which seems to be a golden solution that not only allows the delivery of important nutrients to the soil, but also manages waste in an environmentally safe manner.

20.
J Am Chem Soc ; 133(30): 11802-9, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21707027

RESUMO

Block copolymers with chemically immiscible segments exhibit a variety of microphase-separated nanostructures on the scale of 10-100 nm. Controlling the orientation of these microphase separated nanostructures is vital in many applications such as lithography, membranes, data storage, and so forth. Typical strategies involve the use of external fields or patterned substrates. Here, we report a robust zone casting technique to achieve highly ordered thin films of block copolymers on centimeter-scale substrates. The robustness of this technique is its powerful control on diverse morphologies and exceptional tolerance on versatility of block copolymer chemistry as well as allowance of a wide spectrum of substrates. We demonstrate that perpendicular orientations with respect to the surface are achieved for block copolymers with both lamellar and cylindrical morphologies by controlling solution casting rate, temperatures, and block copolymer chemical structures. Thin films of both noncrystalline and crystalline block copolymers exhibit excellent orientational order and lateral order. However, the lateral order in the thin films of crystalline block copolymers shows dependence on casting temperature and melting temperature of the crystalline segment. Remarkably, all the ordering is independent of the substrates on which the block copolymer films are cast.


Assuntos
Membranas Artificiais , Polímeros/química , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA