Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972349

RESUMO

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente à Meticilina/metabolismo , Sinalização do Cálcio , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
2.
J Biol Chem ; 299(8): 104996, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394010

RESUMO

A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.


Assuntos
Cromatina , Histonas , Humanos , Histonas/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Ligação Proteica
3.
Int J Mol Sci ; 25(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38928089

RESUMO

SARS-CoV-2 S-protein-mediated fusion is thought to involve the interaction of the membrane-distal or N-terminal heptad repeat (NHR) ("HR1") of the cleaved S2 segment of the protein and the membrane-proximal or C-terminal heptad repeat (CHR) ("HR2") regions of the protein. We examined the fusion inhibitory activity of a PEGylated HR2-derived peptide and its palmitoylated derivative using a pseudovirus infection assay. The latter peptide caused a 76% reduction in fusion activity at 10 µM. Our results suggest that small variations in peptide derivatization and differences in the membrane composition of pseudovirus preparations may affect the inhibitory potency of HR2-derived peptides. We suggest that future studies on the inhibition of infectivity of SARS-CoV-2 in both in vitro and in vivo systems consider the need for higher concentrations of peptide inhibitors.


Assuntos
Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Peptídeos/farmacologia , Peptídeos/química , Ácido Palmítico/farmacologia , Ácido Palmítico/química , Internalização do Vírus/efeitos dos fármacos , COVID-19/virologia , COVID-19/metabolismo , Antivirais/farmacologia , Antivirais/química
4.
Mol Cell ; 60(2): 319-27, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26439302

RESUMO

AF10, a DOT1L cofactor, is required for H3K79 methylation and cooperates with DOT1L in leukemogenesis. However, the molecular mechanism by which AF10 regulates DOT1L-mediated H3K79 methylation is not clear. Here we report that AF10 contains a "reader" domain that couples unmodified H3K27 recognition to H3K79 methylation. An AF10 region consisting of a PHD finger-Zn knuckle-PHD finger (PZP) folds into a single module that recognizes amino acids 22-27 of H3, and this interaction is abrogated by H3K27 modification. Structural studies reveal that H3 binding triggers rearrangement of the PZP module to form an H3(22-27)-accommodating channel and that the unmodified H3K27 side chain is encased in a compact hydrogen-bond acceptor-lined cage. In cells, PZP recognition of H3 is required for H3K79 dimethylation, expression of DOT1L-target genes, and proliferation of DOT1L-addicted leukemic cells. Together, our results uncover a pivotal role for H3K27-via readout by the AF10 PZP domain-in regulating the cancer-associated enzyme DOT1L.


Assuntos
Carcinogênese/metabolismo , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Cromatina/química , Cromatina/metabolismo , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase , Histonas/química , Histonas/genética , Humanos , Ligação de Hidrogênio , Leucócitos/metabolismo , Leucócitos/patologia , Lisina/metabolismo , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
5.
Mol Cell ; 59(3): 502-11, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26212453

RESUMO

Access to high-quality antibodies is a necessity for the study of histones and their posttranslational modifications (PTMs). Here we debut the Histone Antibody Specificity Database (http://www.histoneantibodies.com), an online and expanding resource cataloging the behavior of widely used, commercially available histone antibodies by peptide microarray. This interactive web portal provides a critical resource to the biological research community that routinely uses these antibodies as detection reagents for a wide range of applications.


Assuntos
Anticorpos/metabolismo , Bases de Dados Genéticas , Histonas/metabolismo , Análise Serial de Proteínas/métodos , Especificidade de Anticorpos , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional
6.
Genes Dev ; 29(17): 1795-800, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341557

RESUMO

The YEATS domain, found in a number of chromatin-associated proteins, has recently been shown to have the capacity to bind histone lysine acetylation. Here, we show that the YEATS domain of Taf14, a member of key transcriptional and chromatin-modifying complexes in yeast, is a selective reader of histone H3 Lys9 acetylation (H3K9ac). Structural analysis reveals that acetylated Lys9 is sandwiched in an aromatic cage formed by F62 and W81. Disruption of this binding in cells impairs gene transcription and the DNA damage response. Our findings establish a highly conserved acetyllysine reader function for the YEATS domain protein family and highlight the significance of this interaction for Taf14.


Assuntos
Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Histonas/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIID/metabolismo , Acetilação , Dano ao DNA , Histonas/química , Histonas/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
7.
Am J Respir Cell Mol Biol ; 66(3): 271-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34807800

RESUMO

Orai1 is a plasma membrane Ca2+ channel that mediates store-operated Ca2+ entry (SOCE) and regulates inflammation. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is an asthma gene modifier that inhibits Orai1 and SOCE via its C-terminal α6 region. SPLUNC1 levels are diminished in asthma patient airways. Thus, we hypothesized that inhaled α6 peptidomimetics could inhibit Orai1 and reduce airway inflammation in a murine asthma model. To evaluate α6-Orai1 interactions, we used fluorescent assays to measure Ca2+ signaling, Förster resonance energy transfer, fluorescent recovery after photobleaching, immunostaining, total internal reflection microscopy, and Western blotting. To test whether α6 peptidomimetics inhibited SOCE and decreased inflammation in vivo, wild-type and SPLUNC1-/- mice were exposed to house dust mite (HDM) extract with or without α6 peptide. We also performed nebulization, jet milling, and scanning electron microscopy to evaluate α6 for inhalation. SPLUNC1-/- mice had an exaggerated response to HDM. In BAL-derived immune cells, Orai1 levels increased after HDM exposure in SPLUNC1-/- but not wild-type mice. Inhaled α6 reduced Orai1 levels in mice regardless of genotype. In HDM-exposed mice, α6 dose-dependently reduced eosinophilia and neutrophilia. In vitro, α6 inhibited SOCE in multiple immune cell types, and α6 could be nebulized or jet milled without loss of function. These data suggest that α6 peptidomimetics may be a novel, effective antiinflammatory therapy for patients with asthma.


Assuntos
Asma , Peptidomiméticos , Animais , Asma/tratamento farmacológico , Cálcio/metabolismo , Glicoproteínas , Humanos , Inflamação , Pulmão/metabolismo , Camundongos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fosfoproteínas
8.
J Biol Chem ; 297(4): 101145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473995

RESUMO

Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small-molecule BD inhibitors to treat cancers and other diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Histonas/genética , Humanos , Ligação Proteica , Fatores de Transcrição/genética
9.
Genes Dev ; 27(11): 1288-98, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23752590

RESUMO

Histone post-translational modifications regulate chromatin structure and function largely through interactions with effector proteins that often contain multiple histone-binding domains. While significant progress has been made characterizing individual effector domains, the role of paired domains and how they function in a combinatorial fashion within chromatin are poorly defined. Here we show that the linked tandem Tudor and plant homeodomain (PHD) of UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1) operates as a functional unit in cells, providing a defined combinatorial readout of a heterochromatin signature within a single histone H3 tail that is essential for UHRF1-directed epigenetic inheritance of DNA methylation. These findings provide critical support for the "histone code" hypothesis, demonstrating that multivalent histone engagement plays a key role in driving a fundamental downstream biological event in chromatin.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metilação de DNA/genética , Epigênese Genética , Histonas/metabolismo , Proteínas de Homeodomínio/química , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases
10.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722282

RESUMO

FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Proteínas Correpressoras/química , Simulação por Computador , Proteínas de Ligação a DNA/química , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/química , Humanos , Conformação Proteica em alfa-Hélice , Domínios Proteicos
11.
Anal Chem ; 91(18): 11606-11613, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418558

RESUMO

Protein phosphorylation is a critical post-translational modification (PTM). Despite recent technological advances in reversed-phase liquid chromatography (RPLC)-mass spectrometry (MS)-based proteomics, comprehensive phosphoproteomic coverage in complex biological systems remains challenging, especially for hydrophilic phosphopeptides with enriched regions of serines, threonines, and tyrosines that often orchestrate critical biological functions. To address this issue, we developed a simple, easily implemented method to introduce a commonly used tandem mass tag (TMT) to increase peptide hydrophobicity, effectively enhancing RPLC-MS analysis of hydrophilic peptides. Different from conventional TMT labeling, this method capitalizes on using a nonprimary amine buffer and TMT labeling occurring before C18-based solid phase extraction. Through phosphoproteomic analyses of MCF7 cells, we have demonstrated that this method can greatly increase the number of identified hydrophilic phosphopeptides and improve MS detection signals. We applied this method to study the peptide QPSSSR, a very hydrophilic tryptic peptide located on the C-terminus of the G protein-coupled receptor (GPCR) CXCR3. Identification of QPSSSR has never been reported, and we were unable to detect it by traditional methods. We validated our TMT labeling strategy by comparative RPLC-MS analyses of both a hydrophilic QPSSSR peptide library as well as common phosphopeptides. We further confirmed the utility of this method by quantifying QPSSSR phosphorylation abundances in HEK 293 cells under different treatment conditions predicted to alter QPSSSR phosphorylation. We anticipate that this simple TMT labeling method can be broadly used not only for decoding GPCR phosphoproteome but also for effective RPLC-MS analysis of other highly hydrophilic analytes.


Assuntos
Sondas Moleculares/química , Fosfopeptídeos/análise , Sequência de Aminoácidos , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Biblioteca de Peptídeos , Fosfopeptídeos/química , Fosforilação , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Succinimidas/química , Espectrometria de Massas em Tandem/métodos
12.
Nature ; 498(7454): 385-9, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23636332

RESUMO

DNA methylation is an epigenetic modification that has critical roles in gene silencing, development and genome integrity. In Arabidopsis, DNA methylation is established by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) and targeted by 24-nucleotide small interfering RNAs (siRNAs) through a pathway termed RNA-directed DNA methylation (RdDM). This pathway requires two plant-specific RNA polymerases: Pol-IV, which functions to initiate siRNA biogenesis, and Pol-V, which functions to generate scaffold transcripts that recruit downstream RdDM factors. To understand the mechanisms controlling Pol-IV targeting we investigated the function of SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1), a Pol-IV-interacting protein. Here we show that SHH1 acts upstream in the RdDM pathway to enable siRNA production from a large subset of the most active RdDM targets, and that SHH1 is required for Pol-IV occupancy at these same loci. We also show that the SHH1 SAWADEE domain is a novel chromatin-binding module that adopts a unique tandem Tudor-like fold and functions as a dual lysine reader, probing for both unmethylated K4 and methylated K9 modifications on the histone 3 (H3) tail. Finally, we show that key residues within both lysine-binding pockets of SHH1 are required in vivo to maintain siRNA and DNA methylation levels as well as Pol-IV occupancy at RdDM targets, demonstrating a central role for methylated H3K9 binding in SHH1 function and providing the first insights into the mechanism of Pol-IV targeting. Given the parallels between methylation systems in plants and mammals, a further understanding of this early targeting step may aid our ability to control the expression of endogenous and newly introduced genes, which has broad implications for agriculture and gene therapy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/genética , Epigênese Genética/genética , Histonas/química , Histonas/metabolismo , Proteínas de Homeodomínio/química , Lisina/química , Lisina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Mutação , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Interferente Pequeno/biossíntese , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(8): 2092-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26862167

RESUMO

Antibodies have a well-established modular architecture wherein the antigen-binding site residing in the antigen-binding fragment (Fab or Fv) is an autonomous and complete unit for antigen recognition. Here, we describe antibodies departing from this paradigm. We developed recombinant antibodies to trimethylated lysine residues on histone H3, important epigenetic marks and challenging targets for molecular recognition. Quantitative characterization demonstrated their exquisite specificity and high affinity, and they performed well in common epigenetics applications. Surprisingly, crystal structures and biophysical analyses revealed that two antigen-binding sites of these antibodies form a head-to-head dimer and cooperatively recognize the antigen in the dimer interface. This "antigen clasping" produced an expansive interface where trimethylated Lys bound to an unusually extensive aromatic cage in one Fab and the histone N terminus to a pocket in the other, thereby rationalizing the high specificity. A long-neck antibody format with a long linker between the antigen-binding module and the Fc region facilitated antigen clasping and achieved both high specificity and high potency. Antigen clasping substantially expands the paradigm of antibody-antigen recognition and suggests a strategy for developing extremely specific antibodies.


Assuntos
Anticorpos Monoclonais/química , Antígenos/química , Sítios de Ligação de Anticorpos , Histonas/química , Fragmentos Fab das Imunoglobulinas/química , Anticorpos Monoclonais/genética , Antígenos/genética , Cristalografia por Raios X , Histonas/genética , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Metilação , Estrutura Quaternária de Proteína
14.
Nat Chem Biol ; 12(6): 396-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27089029

RESUMO

The discovery of new histone modifications is unfolding at startling rates; however, the identification of effectors capable of interpreting these modifications has lagged behind. Here we report the YEATS domain as an effective reader of histone lysine crotonylation, an epigenetic signature associated with active transcription. We show that the Taf14 YEATS domain engages crotonyllysine via a unique π-π-π-stacking mechanism and that other YEATS domains have crotonyllysine-binding activity.


Assuntos
Epigênese Genética , Histonas/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Histonas/química , Lisina/química , Modelos Moleculares , Estrutura Molecular , Domínios Proteicos
15.
Nucleic Acids Res ; 44(13): 6102-12, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27016734

RESUMO

Histone post-translational modifications, and specific combinations they create, mediate a wide range of nuclear events. However, the mechanistic bases for recognition of these combinations have not been elucidated. Here, we characterize crosstalk between H3T3 and H3T6 phosphorylation, occurring in mitosis, and H3K4me3, a mark associated with active transcription. We detail the molecular mechanisms by which H3T3ph/K4me3/T6ph switches mediate activities of H3K4me3-binding proteins, including those containing plant homeodomain (PHD) and double Tudor reader domains. Our results derived from nuclear magnetic resonance chemical shift perturbation analysis, orthogonal binding assays and cell fluorescence microscopy studies reveal a strong anti-correlation between histone H3T3/T6 phosphorylation and retention of PHD finger proteins in chromatin during mitosis. Together, our findings uncover the mechanistic rules of chromatin engagement for H3K4me3-specific readers during cell division.


Assuntos
Cromatina/genética , Heterocromatina/genética , Mitose/genética , Processamento de Proteína Pós-Traducional/genética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Metilação , Fosforilação , Ligação Proteica/genética , Domínio Tudor/genética
16.
J Biol Chem ; 291(49): 25608-25616, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27742837

RESUMO

In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-ß isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-ß3 by Gß1γ2 In contrast, the peptide robustly prevented activation of PLC-ß3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-ß3 at least as effectively as a dominant-negative form of full-length PLC-ß3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Córtex Pré-Frontal/metabolismo , Animais , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Camundongos , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Estrutura Secundária de Proteína
17.
Nat Methods ; 10(10): 992-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955773

RESUMO

Variability in the quality of antibodies to histone post-translational modifications (PTMs) is a widely recognized hindrance in epigenetics research. Here, we produced recombinant antibodies to the trimethylated lysine residues of histone H3 with high specificity and affinity and no lot-to-lot variation. These recombinant antibodies performed well in common epigenetics applications, and enabled us to identify positive and negative correlations among histone PTMs.


Assuntos
Anticorpos/imunologia , Afinidade de Anticorpos , Histonas/imunologia , Lisina/imunologia , Processamento de Proteína Pós-Traducional , Animais , Anticorpos/genética , Sítios de Ligação de Anticorpos , Linhagem Celular , Escherichia coli/genética , Histonas/química , Histonas/genética , Humanos , Lisina/química , Lisina/genética , Biblioteca de Peptídeos , Sensibilidade e Especificidade , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
18.
Genome Res ; 22(9): 1646-57, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22955977

RESUMO

Data from the Encyclopedia of DNA Elements (ENCODE) project show over 9640 human genome loci classified as long noncoding RNAs (lncRNAs), yet only ~100 have been deeply characterized to determine their role in the cell. To measure the protein-coding output from these RNAs, we jointly analyzed two recent data sets produced in the ENCODE project: tandem mass spectrometry (MS/MS) data mapping expressed peptides to their encoding genomic loci, and RNA-seq data generated by ENCODE in long polyA+ and polyA- fractions in the cell lines K562 and GM12878. We used the machine-learning algorithm RuleFit3 to regress the peptide data against RNA expression data. The most important covariate for predicting translation was, surprisingly, the Cytosol polyA- fraction in both cell lines. LncRNAs are ~13-fold less likely to produce detectable peptides than similar mRNAs, indicating that ~92% of GENCODE v7 lncRNAs are not translated in these two ENCODE cell lines. Intersecting 9640 lncRNA loci with 79,333 peptides yielded 85 unique peptides matching 69 lncRNAs. Most cases were due to a coding transcript misannotated as lncRNA. Two exceptions were an unprocessed pseudogene and a bona fide lncRNA gene, both with open reading frames (ORFs) compromised by upstream stop codons. All potentially translatable lncRNA ORFs had only a single peptide match, indicating low protein abundance and/or false-positive peptide matches. We conclude that with very few exceptions, ribosomes are able to distinguish coding from noncoding transcripts and, hence, that ectopic translation and cryptic mRNAs are rare in the human lncRNAome.


Assuntos
Biossíntese de Proteínas , RNA Longo não Codificante/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células K562 , Anotação de Sequência Molecular , Dados de Sequência Molecular , Peptídeos/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Espectrometria de Massas em Tandem/métodos
19.
Poult Sci ; 103(3): 103384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277887

RESUMO

The aim of the present study was to compare the effects of 2 Ross 308 parent broiler housing systems (SLS-slat-litter system vs. LS-litter-based system) in terms of carcass composition, meat quality traits (chemical composition, texture, physicochemical properties), as well as biometric traits of the digestive system and leg bones. The weight of the eviscerated carcass and the proportion of carcass components were determined at the end of the reproductive period (60 wk of life) following slaughter. The lengths and diameters of the individual intestinal segments, the weight of selected internal organs, the acidity (pH24) and electrical conductivity (EC24), as well as the color (L*, a*, b*) of breast and thigh muscles were assessed. The basal chemical composition of the breast and thigh muscles was also determined, texture analysis of the pectoralis major muscle and measurements of the femur and tibia of parent broilers were also carried out. The housing system differentiated the birds in terms of percentage of breast muscle (SLS-27.4% vs. LS-26.0%) and intramuscular fat content in the breast muscle (SLS-1.1% vs. LS-0.7%), spleen weight pH of the breast and thigh muscles and EC of the thigh muscles (SLS-9.3 mS/cm vs. LS-7.0 mS/cm). Differences were also found between the study groups in the color of the breast and thigh muscles. The housing system affected the results of the texture analysis of the pectoralis major muscle. The birds differed significantly (P < 0.05) in terms of gumminess (SLS-11.1 N vs. LS-16.0 N), springiness, chewiness (SLS-17.6 N × cm vs. LS-23.4 N × cm) and cohesiveness parameters. The housing system did not affect the lengths and diameters of the individual intestinal segments, except for the length of the terminal intestine. There was no significant effect of the housing system on the tibia and femur dimensions analyzed. This study provided information about differences in certain carcass characteristics, meat quality, and the digestive system of Ross 308 parent broilers in relation to the maintenance system.


Assuntos
Galinhas , Abrigo para Animais , Animais , Galinhas/fisiologia , Músculo Esquelético/química , Tíbia , Carne/análise
20.
Elife ; 132024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319148

RESUMO

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.


Assuntos
Histonas , Nucleossomos , Histonas/metabolismo , Código das Histonas , Cromatina , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA