Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Plant Physiol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701198

RESUMO

The concentration of inorganic phosphate (Pi) in the chloroplast stroma must be maintained within narrow limits to sustain photosynthesis and to direct the partitioning of fixed carbon. However, it is unknown if these limits or the underlying contributions of different chloroplastic Pi transporters vary throughout the photoperiod or between chloroplasts in different leaf tissues. To address these questions, we applied live Pi imaging to Arabidopsis (Arabidopsis thaliana) wild-type plants and two loss-of-function transporter mutants: triose phosphate/phosphate translocator (tpt), phosphate transporter 2; 1 (pht2; 1), and tpt pht2; 1. Our analyses revealed that stromal Pi varies spatially and temporally, and that TPT and PHT2; 1 contribute to Pi import with overlapping tissue specificities. Further, the series of progressively diminished steady-state stromal Pi levels in these mutants provided the means to examine the effects of Pi on photosynthetic efficiency without imposing nutritional deprivation. ΦPSII and nonphotochemical quenching (NPQ) correlated with stromal Pi levels. However, the proton efflux activity of the ATP synthase (gH+) and the thylakoid proton motive force (pmf) were unaltered under growth conditions, but were suppressed transiently after a dark to light transition with return to wild-type levels within 2 minutes. These results argue against a simple substrate-level limitation of ATP synthase by depletion of stromal Pi, favoring more integrated regulatory models, which include rapid acclimation of thylakoid ATP synthase activity to reduced Pi levels.

2.
Plant Physiol ; 195(2): 1506-1520, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38401529

RESUMO

Galactolipids comprise the majority of chloroplast membranes in plants, and their biosynthesis requires dephosphorylation of phosphatidic acid at the chloroplast envelope membranes. In Arabidopsis (Arabidopsis thaliana), the lipid phosphate phosphatases LPPγ, LPPε1, and LPPε2 have been previously implicated in chloroplast lipid assembly, with LPPγ being essential, as null mutants were reported to exhibit embryo lethality. Here, we show that lppγ mutants are in fact viable and that LPPγ, LPPε1, and LPPε2 do not appear to have central roles in the plastid pathway of membrane lipid biosynthesis. Redundant LPPγ and LPPε1 activity at the outer envelope membrane is important for plant development, and the respective lppγ lppε1 double mutant exhibits reduced flux through the ER pathway of galactolipid synthesis. While LPPε2 is imported and associated with interior chloroplast membranes, its role remains elusive and does not include basal nor phosphate limitation-induced biosynthesis of glycolipids. The specific physiological roles of LPPγ, LPPε1, and LPPε2 are yet to be uncovered, as does the identity of the phosphatidic acid phosphatase required for plastid galactolipid biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Galactolipídeos , Fosfatidato Fosfatase , Fosfolipídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Galactolipídeos/metabolismo , Fosfolipídeos/metabolismo , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética , Mutação , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo , Plastídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética
3.
Plant J ; 115(2): 386-397, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010739

RESUMO

Carbonic anhydrases (CAs) are ubiquitous enzymes that accelerate the reversible conversion of CO2 to HCO3 - . The Arabidopsis genome encodes members of the α-, ß- and γ-CA families, and it has been hypothesized that ßCA activity has a role in photosynthesis. In this work, we tested this hypothesis by characterizing the two plastidial ßCAs, ßCA1 and ßCA5, in physiological conditions of growth. We conclusively established that both proteins are localized in the chloroplast stroma and that the loss of ßCA5 induced the expression of ßCA1, supporting the existence of regulatory mechanisms to control the expression of stromal ßCAs. We also established that ßCA1 and ßCA5 have markedly different enzymatic kinetics and physiological relevance. Specifically, we found that ßCA5 had a first-order rate constant ~10-fold lower than ßCA1, and that the loss of ßCA5 is detrimental to growth and could be rescued by high CO2 . Furthermore, we established that, while a ßCA1 mutation showed near wild-type growth and no significant impact on photosynthetic efficiency, the loss of ßCA5 markedly disrupted photosynthetic efficiency and light-harvesting capacity at ambient CO2 . Therefore, we conclude that in physiological autotrophic growth, the loss of the more highly expressed ßCA1 does not compensate for the loss of a less active ßCA5, which in turn is involved in growth and photosynthesis at ambient CO2 levels. These results lend support to the hypothesis that, in Arabidopsis,ßCAs have non-overlapping roles in photosynthesis and identify a critical activity of stromal ßCA5 and a dispensable role for ßCA1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anidrases Carbônicas , Arabidopsis/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Plant Physiol ; 191(3): 1818-1835, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36635853

RESUMO

Understanding the regulation of photosynthetic light harvesting and electron transfer is of great importance to efforts to improve the ability of the electron transport chain to supply downstream metabolism. A central regulator of the electron transport chain is ATP synthase, the molecular motor that harnesses the chemiosmotic potential generated from proton-coupled electron transport to synthesize ATP. ATP synthase is regulated both thermodynamically and post-translationally, with proposed phosphorylation sites on multiple subunits. In this study we focused on two N-terminal serines on the catalytic subunit ß in tobacco (Nicotiana tabacum), previously proposed to be important for dark inactivation of the complex to avoid ATP hydrolysis at night. Here we show that there is no clear role for phosphorylation in the dark inactivation of ATP synthase. Instead, mutation of one of the two phosphorylated serine residues to aspartate to mimic constitutive phosphorylation strongly decreased ATP synthase abundance. We propose that the loss of N-terminal phosphorylation of ATPß may be involved in proper ATP synthase accumulation during complex assembly.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons , Fotossíntese , ATPases de Cloroplastos Translocadoras de Prótons/genética , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Fosforilação , Fotossíntese/genética , Transporte de Elétrons , Trifosfato de Adenosina/metabolismo
5.
Plant Cell Environ ; 47(2): 416-428, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37937663

RESUMO

Photorespiration consumes substantial amounts of energy in the forms of adenosine triphosphate (ATP) and reductant making the pathway an important component in leaf energetics. Because of this high reductant demand, photorespiration is proposed to act as a photoprotective electron sink. However, photorespiration consumes more ATP relative to reductant than the C3 cycle meaning increased flux disproportionally increases ATP demand relative to reductant. Here we explore how energetic consumption from photorespiration impacts the flexibility of the light reactions in nicotiana tabacum. Specifically, we demonstrate that decreased photosynthetic efficiency (ϕII ) at low photorespiratory flux was related to feedback regulation at the chloroplast ATP synthase. Additionally, decreased ϕII at high photorespiratory flux resulted in the accumulation of photoinhibition at photosystem II centers. These results are contrary to the proposed role of photorespiration as a photoprotective electron sink. Instead, our results suggest a novel role of ATP consumption from photorespiration in maintaining ATP synthase activity, with implications for maintaining energy balance and preventing photodamage that will be critical for plant engineering strategies.


Assuntos
Trifosfato de Adenosina , Nicotiana , Trifosfato de Adenosina/metabolismo , Substâncias Redutoras , Retroalimentação , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo
6.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38341797

RESUMO

Diffusion of electrons over distances on the order of 100 µm has been observed in crystals of a small tetraheme cytochrome (STC) from Shewanella oneidensis [J. Huang et al. J. Am. Chem. Soc. 142, 10459-10467 (2020)]. Electron transfer between hemes in adjacent subunits of the crystal is slower and more strongly dependent on temperature than had been expected based on semiclassical electron-transfer theory. We here explore explanations for these findings by molecular-dynamics simulations of crystalline and monomeric STC. New procedures are developed for including time-dependent quantum mechanical energy differences in the gap between the energies of the reactant and product states and for evaluating fluctuations of the electronic-interaction matrix element that couples the two hemes. Rate constants for electron transfer are calculated from the time- and temperature-dependent energy gaps, coupling factors, and Franck-Condon-weighted densities of states using an expression with no freely adjustable parameters. Back reactions are considered, as are the effects of various protonation states of the carboxyl groups on the heme side chains. Interactions with water are found to dominate the fluctuations of the energy gap between the reactant and product states. The calculated rate constant for electron transfer from heme IV to heme Ib in a neighboring subunit at 300 K agrees well with the measured value. However, the calculated activation energy of the reaction in the crystal is considerably smaller than observed. We suggest two possible explanations for this discrepancy. The calculated rate constant for transfer from heme I to II within the same subunit of the crystal is about one-third that for monomeric STC in solution.


Assuntos
Citocromos , Elétrons , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Heme/química , Oxirredução
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836593

RESUMO

Cyanobacteria must prevent imbalances between absorbed light energy (source) and the metabolic capacity (sink) to utilize it to protect their photosynthetic apparatus against damage. A number of photoprotective mechanisms assist in dissipating excess absorbed energy, including respiratory terminal oxidases and flavodiiron proteins, but inherently reduce photosynthetic efficiency. Recently, it has been hypothesized that some engineered metabolic pathways may improve photosynthetic performance by correcting source/sink imbalances. In the context of this subject, we explored the interconnectivity between endogenous electron valves, and the activation of one or more heterologous metabolic sinks. We coexpressed two heterologous metabolic pathways that have been previously shown to positively impact photosynthetic activity in cyanobacteria, a sucrose production pathway (consuming ATP and reductant) and a reductant-only consuming cytochrome P450. Sucrose export was associated with improved quantum yield of phtotosystem II (PSII) and enhanced electron transport chain flux, especially at lower illumination levels, while cytochrome P450 activity led to photosynthetic enhancements primarily observed under high light. Moreover, coexpression of these two heterologous sinks showed additive impacts on photosynthesis, indicating that neither sink alone was capable of utilizing the full "overcapacity" of the electron transport chain. We find that heterologous sinks may partially compensate for the loss of photosystem I (PSI) oxidizing mechanisms even under rapid illumination changes, although this compensation is incomplete. Our results provide support for the theory that heterologous metabolism can act as a photosynthetic sink and exhibit some overlapping functionality with photoprotective mechanisms, while potentially conserving energy within useful metabolic products that might otherwise be "lost."


Assuntos
Cianobactérias/metabolismo , Engenharia Metabólica , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Cianobactérias/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Luz , Redes e Vias Metabólicas/genética , Oxirredução , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Sacarose/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
8.
Small ; 19(52): e2304013, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653599

RESUMO

The ability to redirect electron transport to new reactions in living systems opens possibilities to store energy, generate new products, or probe physiological processes. Recent work by Huang et al. showed that 3D crystals of small tetraheme cytochromes (STC) can transport electrons over nanoscopic to mesoscopic distances by an electron hopping mechanism, making them promising materials for nanowires. However, fluctuations at room temperature may distort the nanostructure, hindering efficient electron transport. Classical molecular dynamics simulations of these fluctuations at the nano- and mesoscopic scales allowed us to develop a graph network representation to estimate maximum electron flow that can be driven through STC wires. In longer nanowires, transient structural fluctuations at protein-protein interfaces tended to obstruct efficient electron transfer, but these blockages are ameliorated in thicker crystals where alternative electron transfer pathways become more efficient. The model implies that more flexible proteinprotein interfaces limit the required minimum diameter to carry currents commensurate with conventional electronics.


Assuntos
Nanofios , Transporte de Elétrons , Citocromos/química , Citocromos/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo
9.
New Phytol ; 239(5): 1869-1886, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429324

RESUMO

In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Fotossíntese/fisiologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Proteínas de Membrana/metabolismo
10.
New Phytol ; 237(1): 160-176, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36378135

RESUMO

Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Tilacoides/metabolismo , Proteínas de Arabidopsis/metabolismo , Fotossíntese/fisiologia , Luz , Aclimatação , Transporte de Íons
11.
Plant Cell Environ ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111217

RESUMO

Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.

12.
Plant Cell Environ ; 46(1): 64-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36305484

RESUMO

Triose phosphate utilisation (TPU) limits the maximum rate at which plants can photosynthesise. However, TPU is almost never found to be limiting photosynthesis under ambient conditions for plants. This, along with previous results showing adaptability of TPU at low temperature, suggest that TPU capacity is regulated to be just above the photosynthetic rate achievable under the prevailing conditions. A set of experiments were performed to study the adaptability of TPU capacity when plants are acclimated to elevated CO2 concentrations. Plants held at 1500 ppm CO2 were initially TPU limited. After 30 h they no longer exhibited TPU limitations but they did not elevate their TPU capacity. Instead, the maximum rates of carboxylation and electron transport declined. A timecourse of regulatory responses was established. A step increase of CO2 first caused PSI to be oxidised but after 40 s both PSI and PSII had excess electrons as a result of acceptor-side limitations. Electron flow to PSI slowed and the proton motive force increased. Eventually, non-photochemical quenching reduced electron flow sufficiently to balance the TPU limitation. Over several minutes rubisco deactivated contributing to regulation of metabolism to overcome the TPU limitation.


Assuntos
Dióxido de Carbono , Fosfatos
13.
Theor Appl Genet ; 136(11): 222, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823979

RESUMO

KEY MESSAGE: Quantitative Trait Loci "hotspots" for drought tolerance were identified on chromosomes Pv06, Pv07 and Pv10 of common bean. Drought is a major production constraint of common bean (Phaseolus vulgaris L.) worldwide. The objective of this study was to identify the Quantitative Trait Loci (QTL) for drought tolerance in an Andean population of Recombinant Inbred Lines (RILs). A total of 155 F5:7 RILs derived from a cross between Kijivu (drought tolerant) and Bukoba (drought susceptible) were evaluated for drought tolerance in field and pot experiments. Four field experiments were conducted at three locations in Zambia in 2020 and 2021. All field trials were conducted in the dry season under irrigation. The 155 RILs were genotyped with 11,292 SNPs, and composite interval mapping was conducted to identify QTL for drought tolerance. Seed yield for Kijivu under drought stress was consistently higher than for Bukoba across all four field trials. A total of 60 QTL were identified for morphological, agronomic, and physiological traits under drought stress and non-stress conditions. However, the majority of these QTL were specific to drought stress. QTL "hotspots" for drought tolerance were identified on chromosomes Pv06, Pv07, and Pv10. Extensive co-localizations for agronomic and morpho-physiological traits under drought stress were observed at the three drought-tolerance QTL hotspots. Additionally, these three QTL hotspots overlapped with previously identified QTL for drought tolerance, while several others identified QTL are novel. The three identified QTL hotspots could be used in future marker-assisted selection for drought tolerance in common bean.


Assuntos
Phaseolus , Locos de Características Quantitativas , Phaseolus/genética , Mapeamento Cromossômico , Resistência à Seca , Fenótipo , Secas
14.
Plant Physiol ; 187(2): 931-946, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608952

RESUMO

Light is the ultimate source of energy for photosynthetic organisms, but respiration is fundamental for supporting metabolism during the night or in heterotrophic tissues. In this work, we isolated Physcomitrella (Physcomitrium patens) plants with altered respiration by inactivating Complex I (CI) of the mitochondrial electron transport chain by independently targeting on two essential subunits. Inactivation of CI caused a strong growth impairment even in fully autotrophic conditions in tissues where all cells are photosynthetically active, demonstrating that respiration is essential for photosynthesis. CI mutants showed alterations in the stoichiometry of respiratory complexes while the composition of photosynthetic apparatus was substantially unaffected. CI mutants showed altered photosynthesis with high activity of both Photosystems I and II, likely the result of high chloroplast ATPase activity that led to smaller ΔpH formation across thylakoid membranes, decreasing photosynthetic control on cytochrome b6f in CI mutants. These results demonstrate that alteration of respiratory activity directly impacts photosynthesis in P. patens and that metabolic interaction between organelles is essential in their ability to use light energy for growth.


Assuntos
Adenosina Trifosfatases/genética , Bryopsida/genética , Proteínas de Cloroplastos/genética , Proteínas de Plantas/genética , Adenosina Trifosfatases/metabolismo , Bryopsida/enzimologia , Proteínas de Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo
15.
Plant Cell Environ ; 45(6): 1682-1697, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297062

RESUMO

Using a population of recombinant inbred lines (RILs) cowpea (Vigna unguiculata. L. Walp), we tested for co-linkages between lipid contents and chilling responses of photosynthesis. Under low-temperature conditions (19°C/13°C, day/night), we observed co-linkages between quantitative trait loci intervals for photosynthetic light reactions and specific fatty acids, most strikingly, the thylakoid-specific fatty acid 16:1Δ3trans found exclusively in phosphatidylglycerol (PG 16:1t). By contrast, we did not observe co-associations with bulk polyunsaturated fatty acids or high-melting-point-PG (sum of PG 16:0, PG 18:0 and PG 16:1t) previously thought to be involved in chilling sensitivity. These results suggest that in cowpea, chilling sensitivity is modulated by specific lipid interactions rather than bulk properties. We were able to recapitulate the predicted impact of PG 16:1t levels on photosynthetic responses at low temperature using mutants and transgenic Arabidopsis lines. Because PG 16:1t synthesis requires the activity of peroxiredoxin-Q, which is activated by H2 O2 and known to be involved in redox signalling, we hypothesise that the accumulation of PG 16:1t occurs as a result of upstream effects on photosynthesis that alter redox status and production of reactive oxygen species.


Assuntos
Arabidopsis , Vigna , Arabidopsis/genética , Temperatura Baixa , Ácidos Graxos/metabolismo , Fotossíntese , Tilacoides/metabolismo
16.
Bioinformatics ; 36(2): 568-577, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31304958

RESUMO

MOTIVATION: The rapid improvement of phenotyping capability, accuracy and throughput have greatly increased the volume and diversity of phenomics data. A remaining challenge is an efficient way to identify phenotypic patterns to improve our understanding of the quantitative variation of complex phenotypes, and to attribute gene functions. To address this challenge, we developed a new algorithm to identify emerging phenomena from large-scale temporal plant phenotyping experiments. An emerging phenomenon is defined as a group of genotypes who exhibit a coherent phenotype pattern during a relatively short time. Emerging phenomena are highly transient and diverse, and are dependent in complex ways on both environmental conditions and development. Identifying emerging phenomena may help biologists to examine potential relationships among phenotypes and genotypes in a genetically diverse population and to associate such relationships with the change of environments or development. RESULTS: We present an emerging phenomenon identification tool called Temporal Emerging Phenomenon Finder (TEP-Finder). Using large-scale longitudinal phenomics data as input, TEP-Finder first encodes the complicated phenotypic patterns into a dynamic phenotype network. Then, emerging phenomena in different temporal scales are identified from dynamic phenotype network using a maximal clique based approach. Meanwhile, a directed acyclic network of emerging phenomena is composed to model the relationships among the emerging phenomena. The experiment that compares TEP-Finder with two state-of-art algorithms shows that the emerging phenomena identified by TEP-Finder are more functionally specific, robust and biologically significant. AVAILABILITY AND IMPLEMENTATION: The source code, manual and sample data of TEP-Finder are all available at: http://phenomics.uky.edu/TEP-Finder/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Genótipo , Fenótipo , Plantas
17.
Plant Physiol ; 183(2): 733-749, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32245790

RESUMO

The plant hormone jasmonate (JA) promotes resistance to biotic stress by stimulating the degradation of JASMONATE ZIM-DOMAIN (JAZ) proteins, which relieves repression on MYC transcription factors that execute defense programs. JA-triggered depletion of JAZ proteins in Arabidopsis (Arabidopsis thaliana) is also associated with reduced growth and seed production, but the mechanisms underlying these pleiotropic growth effects remain unclear. Here, we investigated this question using an Arabidopsis JAZ-deficient mutant (jazD; jaz1-jaz7, jaz9, jaz10, and jaz 13) that exhibits high levels of defense and strong growth inhibition. Genetic suppressor screens for mutations that uncouple growth-defense tradeoffs in the jazD mutant identified nine independent causal mutations in the red-light receptor phytochrome B (phyB). Unlike the ability of the phyB mutations to completely uncouple the mild growth-defense phenotypes in a jaz mutant (jazQ) defective in JAZ1, JAZ3, JAZ4, JAZ9, and JAZ10, phyB null alleles only weakly alleviated the growth and reproductive defects in the jazD mutant. phyB-independent growth restriction of the jazD mutant was tightly correlated with upregulation of the Trp biosynthetic pathway but not with changes in central carbon metabolism. Interestingly, jazD and jazD phyB plants were insensitive to a chemical inhibitor of Trp biosynthesis, which is a phenotype previously observed in plants expressing hyperactive MYC transcription factors that cannot bind JAZ repressors. These data provide evidence that the mechanisms underlying JA-mediated growth-defense balance depend on the level of defense, and they further establish an association between growth inhibition at high levels of defense and dysregulation of Trp biosynthesis.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fitocromo B/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fitocromo B/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Plant Cell Environ ; 44(7): 2290-2307, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33555066

RESUMO

We explored the effects, on photosynthesis in cowpea (Vigna unguiculata) seedlings, of high temperature and light-environmental stresses that often co-occur under field conditions and can have greater impact on photosynthesis than either by itself. We observed contrasting responses in the light and carbon assimilatory reactions, whereby in high temperature, the light reactions were stimulated while CO2 assimilation was substantially reduced. There were two striking observations. Firstly, the primary quinone acceptor (QA ), a measure of the regulatory balance of the light reactions, became more oxidized with increasing temperature, suggesting increased electron sink capacity, despite the reduced CO2 fixation. Secondly, a strong, O2 -dependent inactivation of assimilation capacity, consistent with down-regulation of rubisco under these conditions. The dependence of these effects on CO2 , O2 and light led us to conclude that both photorespiration and an alternative electron acceptor supported increased electron flow, and thus provided photoprotection under these conditions. Further experiments showed that the increased electron flow was maintained by rapid rates of PSII repair, particularly at combined high light and temperature. Overall, the results suggest that photodamage to the light reactions can be avoided under high light and temperatures by increasing electron sink strength, even when assimilation is strongly suppressed.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Vigna/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Metabolismo Energético , Fluorescência , Luz , Lincomicina/farmacologia , Processos Fotoquímicos , Temperatura , Vigna/efeitos dos fármacos
19.
Plant Cell ; 30(2): 447-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29437989

RESUMO

Photosynthesis occurs in the thylakoid membrane, where the predominant lipid is monogalactosyldiacylglycerol (MGDG). As environmental conditions change, photosynthetic membranes have to adjust. In this study, we used a loss-of-function Chlamydomonas reinhardtii mutant deficient in the MGDG-specific lipase PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION1) to investigate the link between MGDG turnover, chloroplast ultrastructure, and the production of reactive oxygen species (ROS) in response to different adverse environmental conditions. The pgd1 mutant showed altered MGDG abundance and acyl composition and altered abundance of photosynthesis complexes, with an increased PSII/PSI ratio. Transmission electron microscopy showed hyperstacking of the thylakoid grana in the pgd1 mutant. The mutant also exhibited increased ROS production during N deprivation and high light exposure. Supplementation with bicarbonate or treatment with the photosynthetic electron transport blocker DCMU protected the cells against oxidative stress in the light and reverted chlorosis of pgd1 cells during N deprivation. Furthermore, exposure to stress conditions such as cold and high osmolarity induced the expression of PGD1, and loss of PGD1 in the mutant led to increased ROS production and inhibited cell growth. These findings suggest that PGD1 plays essential roles in maintaining appropriate thylakoid membrane composition and structure, thereby affecting growth and stress tolerance when cells are challenged under adverse conditions.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Galactolipídeos/metabolismo , Lipase/metabolismo , Tilacoides/metabolismo , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Cloroplastos/metabolismo , Transporte de Elétrons , Meio Ambiente , Lipase/genética , Fotossíntese , Estresse Fisiológico
20.
Plant J ; 97(3): 460-474, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30350901

RESUMO

Plant peroxisomes function collaboratively with other subcellular organelles, such as chloroplasts and mitochondria, in several metabolic processes. To comprehensively investigate the impact of peroxisomal function on photosynthesis, especially under conditions that are more relevant to natural environments, a systematic screen of over 150 Arabidopsis mutants of genes encoding peroxisomal proteins was conducted using the automated Dynamic Environment Photosynthesis Imager (DEPI). Dynamic and high-light (HL) conditions triggered significant photosynthetic defects in a subset of the mutants, including those of photorespiration (PR) and other peroxisomal processes, some of which may also be related to PR. Further analysis of the PR mutants revealed activation of cyclic electron flow (CEF) around photosystem I and higher accumulation of hydrogen peroxide (H2 O2 ) under HL conditions. We hypothesize that impaired PR disturbs the balance of ATP and NADPH, leading to the accumulation of H2 O2 that activates CEF to produce ATP to compensate for the imbalance of reducing equivalents. The identification of peroxisomal mutants involved in PR and other peroxisomal functions in the photometric screen will enable further investigation of regulatory links between photosynthesis and PR and interorganellar interaction at the mechanistic level.


Assuntos
Arabidopsis/genética , Peroxissomos/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Luz , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Mutação , Oxigênio/metabolismo , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA