Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 28(11): 1646-1655, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30254051

RESUMO

The histone variant H3.3 is deposited across active genes, regulatory regions, and telomeres. It remains unclear how H3.3 interacts with chromatin modifying enzymes and thereby modulates gene activity. In this study, we performed a co-immunoprecipitation-mass spectrometry analysis of proteins associated with H3.3-containing nucleosomes and identified the nucleosome remodeling and deacetylase complex (NuRD) as a major H3.3-interactor. We show that the H3.3-NuRD interaction is dependent on the H3.3 lysine 4 residue and that NuRD binding occurs when lysine 4 is in its unmodified state. The majority of NuRD binding colocalizes with H3.3 and directly correlates with gene activity. H3.3 depletion led to reduced levels of NuRD at sites previously occupied by H3.3, as well as a global decrease in histone marks associated with gene activation. Our results demonstrate the importance of H3.3 in the maintenance of the cellular epigenetic landscape and reveal a highly prevalent interaction between the histone variant H3.3 and the multiprotein complex NuRD.


Assuntos
Código das Histonas , Histonas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Epigênese Genética , Histonas/química , Histonas/genética , Camundongos , Ligação Proteica
2.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617359

RESUMO

The bipolar disorder (BD) risk gene ANK3 encodes the scaffolding protein AnkyrinG (AnkG). In neurons, AnkG regulates polarity and ion channel clustering at axon initial segments and nodes of Ranvier. Disruption of neuronal AnkG causes BD-like phenotypes in mice. During development, AnkG is also expressed at comparable levels in oligodendrocytes and facilitates the efficient assembly of paranodal junctions. However, the physiological roles of glial AnkG in the mature nervous system, and its contributions to BD-like phenotypes, remain unexplored. Here, we generated oligodendroglia-specific AnkG conditional knockout mice and observed the destabilization of axoglial interactions in aged but not young adult mice. In addition, these mice exhibited profound histological, electrophysiological, and behavioral pathophysiologies. Unbiased translatomic profiling revealed potential compensatory machineries. These results highlight the critical functions of glial AnkG in maintaining proper axoglial interactions throughout aging and suggests a previously unrecognized contribution of oligodendroglial AnkG to neuropsychiatric disorders.

3.
Res Sq ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883732

RESUMO

Background: NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results: We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions: Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.

4.
J Biol Chem ; 287(27): 22691-700, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22556407

RESUMO

Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Células-Tronco Embrionárias/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Anticoagulantes/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Células Cultivadas , Meios de Cultura/farmacologia , Ectoderma/citologia , Ectoderma/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparina/farmacologia , Heparitina Sulfato/farmacologia , Mesoderma/citologia , Mesoderma/efeitos dos fármacos , Camundongos , Camundongos Mutantes , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Placa Neural/citologia , Placa Neural/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
5.
Biol Chem ; 394(6): 741-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23370908

RESUMO

Heparan sulfate (HS) belongs to a class of glycosaminoglycans and is a highly sulfated, linear polysaccharide. HS biosynthesis and modification involves numerous enzymes. HS exists as part of glycoproteins named HS proteoglycans, which are expressed abundantly on the cell surface and in the extracellular matrix. HS interacts with numerous proteins, including growth factors, morphogens, and adhesion molecules, and thereby regulates important developmental processes in invertebrates and vertebrates. Embryonic stem cells (ESCs) are distinguished by their characteristics of self-renewal and pluripotency. Self-renewal allows ESCs to proliferate indefinitely in their undifferentiated state, whereas pluripotency implies their capacity to differentiate into the three germ layers and ultimately all cell types of the adult body. Both traits are tightly regulated by numerous cell signaling pathways. Recent studies have highlighted the importance of HS in the modulation of ESC functions, specifically their lineage fate. Here, we review the current advances that have been made in understanding the structural changes of HS during ESC differentiation and in deciphering the molecular mechanisms by which HS modulates cell fate. Finally, we discuss the applications of heparinoids and chemical inhibitors of HS biosynthesis for the manipulation of ESC culture and directed differentiation.


Assuntos
Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Heparitina Sulfato/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Heparinoides/farmacologia , Heparitina Sulfato/biossíntese , Heparitina Sulfato/química , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
6.
J Biomol Tech ; 34(4)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38268995

RESUMO

Core facility laboratories are an essential part of the successful research enterprise of many universities around the world. Core facilities provide state-of-the-art instrumentation and technologies to support research of all faculty, postdocs, and students on a fee-for-service basis. Academic next-generation sequencing cores are typically "full service" facilities, and access to and training on their instrumentation is limited to core staff. To address these limitations, we provided graduate students with technical training at our core facility. We developed a 1-week noncredit-bearing workshop and recruited 6 graduate students (N = 6) as part of a pilot program. The program involved online teaching, classroom-based teaching, and hands-on training in next-generation sequencing library preparation and sequencer operation. A post-participation survey revealed highly positive outcomes in terms of skill development and increased awareness of technologies offered by the core facility. A workshop of this scale could be incorporated into the graduate curriculum and extended to core facilities that focus on other technologies. We believe that introducing formal standardized teaching spearheaded by core facilities would improve the graduate student curriculum and hope that this study can provide guidance on curriculum design for similar workshops.


Assuntos
Biotecnologia , Estudantes , Humanos , Escolaridade , Currículo , Docentes
8.
J Biol Chem ; 285(8): 5907-16, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20022960

RESUMO

Pluripotent embryonic stem cells (ESCs) must select between alternative fates of self-renewal and lineage commitment at each division during continuous proliferation. Heparan sulfate (HS) is a highly sulfated polysaccharide and is present abundantly on the ESC surface. In this study, we investigated the role of HS in ESC self-renewal by examining Ext1(-/-) ESCs that are deficient in HS. We found that Ext1(-/-) ESCs retained their self-renewal potential but failed to transit from self-renewal to differentiation upon removal of leukemia inhibitory factor. Furthermore, we found that the aberrant cell fate commitment is caused by defects in fibroblast growth factor signaling, which directly retained high expression of the pluripotency gene Nanog in Ext1(-/-) ESCs. Therefore, our studies identified and defined HS as a novel factor that controls ESC fate commitment and also delineates that HS facilitates fibroblast growth factor signaling, which, in turn, inhibits Nanog expression and commits ESCs to lineage differentiation.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Heparitina Sulfato/biossíntese , Animais , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Fatores de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Heparitina Sulfato/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Fator Inibidor de Leucemia/farmacologia , Camundongos , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteína Homeobox Nanog , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
9.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580244

RESUMO

Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.


Assuntos
alfa-Globulinas/uso terapêutico , AVC Isquêmico/tratamento farmacológico , alfa-Globulinas/administração & dosagem , alfa-Globulinas/metabolismo , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem
10.
Epigenetics Chromatin ; 7(1): 38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25598842

RESUMO

BACKGROUND: The histone variant H3.3 plays a critical role in maintaining the pluripotency of embryonic stem cells (ESCs) by regulating gene expression programs important for lineage specification. H3.3 is deposited by various chaperones at regulatory sites, gene bodies, and certain heterochromatic sites such as telomeres and centromeres. Using Tet-inhibited expression of epitope-tagged H3.3 combined with ChIP-Seq we undertook genome-wide measurements of H3.3 dissociation rates across the ESC genome and examined the relationship between H3.3-nucleosome turnover and ESC-specific transcription factors, chromatin modifiers, and epigenetic marks. RESULTS: Our comprehensive analysis of H3.3 dissociation rates revealed distinct H3.3 dissociation dynamics at various functional chromatin domains. At transcription start sites, H3.3 dissociates rapidly with the highest rate at nucleosome-depleted regions (NDRs) just upstream of Pol II binding, followed by low H3.3 dissociation rates across gene bodies. H3.3 turnover at transcription start sites, gene bodies, and transcription end sites was positively correlated with transcriptional activity. H3.3 is found decorated with various histone modifications that regulate transcription and maintain chromatin integrity. We find greatly varying H3.3 dissociation rates across various histone modification domains: high dissociation rates at active histone marks and low dissociation rates at heterochromatic marks. Well- defined zones of high H3.3-nucleosome turnover were detected at binding sites of ESC-specific pluripotency factors and chromatin remodelers, suggesting an important role for H3.3 in facilitating protein binding. Among transcription factor binding sites we detected higher H3.3 turnover at distal cis-acting sites compared to proximal genic transcription factor binding sites. Our results imply that fast H3.3 dissociation is a hallmark of interactions between DNA and transcriptional regulators. CONCLUSION: Our study demonstrates that H3.3 turnover and nucleosome stability vary greatly across the chromatin landscape of embryonic stem cells. The presence of high H3.3 turnover at RNA Pol II binding sites at extragenic regions as well as at transcription start and end sites of genes, suggests a specific role for H3.3 in transcriptional initiation and termination. On the other hand, the presence of well-defined zones of high H3.3 dissociation at transcription factor and chromatin remodeler binding sites point to a broader role in facilitating accessibility.

11.
Int J Biol Sci ; 9(10): 1134-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24339734

RESUMO

Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-generational inheritance ensures that the ESC chromatin state is stably transmitted from one generation to the next; yet at the same time, epigenetic marks are highly dynamic, reversible and responsive to extracellular cues. Once committed to differentiation, the ESC epigenome is remodeled and resolves into a more compact chromatin state. A thorough understanding of the role of chromatin modifiers in ESC fate and differentiation will be important if they are to be used for therapeutic purposes. Recent technical advances, particularly in next-generation sequencing technologies, have provided a genome-scale view of epigenetic marks and chromatin modifiers. More affordable and faster sequencing platforms have led to a comprehensive characterization of the ESC epigenome and epigenomes of differentiated cell types. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone modifications, histone variants, DNA methylation and chromatin modifiers in ESC pluripotency and ESC fate. We provide a detailed and comprehensive discussion of genome-wide studies that are pertinent to our understanding of mammalian development.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Epigenômica , Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Metilação de DNA , Humanos
12.
Genome Biol ; 14(10): R121, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24176123

RESUMO

BACKGROUND: Nucleosomes are present throughout the genome and must be dynamically regulated to accommodate binding of transcription factors and RNA polymerase machineries by various mechanisms. Despite the development of protocols and techniques that have enabled us to map nucleosome occupancy genome-wide, the dynamic properties of nucleosomes remain poorly understood, particularly in mammalian cells. The histone variant H3.3 is incorporated into chromatin independently of DNA replication and requires displacement of existing nucleosomes for its deposition. Here, we measure H3.3 turnover at high resolution in the mammalian genome in order to present a genome-wide characterization of replication-independent H3.3-nucleosome dynamics. RESULTS: We developed a system to study the DNA replication-independent turnover of nucleosomes containing the histone variant H3.3 in mammalian cells. By measuring the genome-wide incorporation of H3.3 at different time points following epitope-tagged H3.3 expression, we find three categories of H3.3-nucleosome turnover in vivo: rapid turnover, intermediate turnover and, specifically at telomeres, slow turnover. Our data indicate that H3.3-containing nucleosomes at enhancers and promoters undergo rapid turnover that is associated with active histone modification marks including H3K4me1, H3K4me3, H3K9ac, H3K27ac and the histone variant H2A.Z. The rate of turnover is negatively correlated with H3K27me3 at regulatory regions and with H3K36me3 at gene bodies. CONCLUSIONS: We have established a reliable approach to measure turnover rates of H3.3-containing nucleosomes on a genome-wide level in mammalian cells. Our results suggest that distinct mechanisms control the dynamics of H3.3 incorporation at functionally different genomic regions.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Replicação do DNA , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genes de RNAr , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Regiões Promotoras Genéticas , RNA de Transferência/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA