Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Clin Nucl Med ; 49(9): 822-829, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693648

RESUMO

PURPOSE: 18 F-FDG PET captures the relationship between glucose metabolism and synaptic activity, allowing for modeling brain function through metabolic connectivity. We investigated tumor-induced modifications of brain metabolic connectivity. PATIENTS AND METHODS: Forty-three patients with left hemispheric tumors and 18 F-FDG PET/MRI were retrospectively recruited. We included 37 healthy controls (HCs) from the database CERMEP-IDB-MRXFDG. We analyzed the whole brain and right versus left hemispheres connectivity in patients and HC, frontal versus temporal tumors, active tumors versus radiation necrosis, and patients with high Karnofsky performance score (KPS = 100) versus low KPS (KPS < 70). Results were compared with 2-sided t test ( P < 0.05). RESULTS: Twenty high-grade glioma, 4 low-grade glioma, and 19 metastases were included. The patients' whole-brain network displayed lower connectivity metrics compared with HC ( P < 0.001), except assortativity and betweenness centrality ( P = 0.001). The patients' left hemispheres showed decreased similarity, and lower connectivity metrics compared with the right ( P < 0.01), with the exception of betweenness centrality ( P = 0.002). HC did not show significant hemispheric differences. Frontal tumors showed higher connectivity metrics ( P < 0.001) than temporal tumors, but lower betweenness centrality ( P = 4.5 -7 ). Patients with high KPS showed higher distance local efficiency ( P = 0.01), rich club coefficient ( P = 0.0048), clustering coefficient ( P = 0.00032), betweenness centrality ( P = 0.008), and similarity ( P = 0.0027) compared with low KPS. Patients with active tumor(s) (14/43) demonstrated significantly lower connectivity metrics compared with necroses. CONCLUSIONS: Tumors cause reorganization of metabolic brain networks, characterized by formation of new connections and decreased centrality. Patients with frontal tumors retained a more efficient, centralized, and segregated network than patients with temporal tumors. Stronger metabolic connectivity was associated with higher KPS.


Assuntos
Neoplasias Encefálicas , Encéfalo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Adulto , Idoso , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA