Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 330(5): 254-264, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29998472

RESUMO

The German cockroach, Blattella germanica, is a worldwide pest that infests buildings, including homes, restaurants, and hospitals, often living in unsanitary conditions. As a disease vector and producer of allergens, this species has major health and economic impacts on humans. Factors contributing to the success of the German cockroach include its resistance to a broad range of insecticides, immunity to many pathogens, and its ability, as an extreme generalist omnivore, to survive on most food sources. The recently published genome shows that B. germanica has an exceptionally high number of protein coding genes. In this study, we investigate the functions of the 93 significantly expanded gene families with the aim to better understand the success of B. germanica as a major pest despite such inhospitable conditions. We find major expansions in gene families with functions related to the detoxification of insecticides and allelochemicals, defense against pathogens, digestion, sensory perception, and gene regulation. These expansions might have allowed B. germanica to develop multiple resistance mechanisms to insecticides and pathogens, and enabled a broad, flexible diet, thus explaining its success in unsanitary conditions and under recurrent chemical control. The findings and resources presented here provide insights for better understanding molecular mechanisms that will facilitate more effective cockroach control.


Assuntos
Blattellidae/genética , Blattellidae/imunologia , Proteínas de Insetos/genética , Animais , Blattellidae/metabolismo , Dieta , Evolução Molecular , Genoma de Inseto , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Resistência a Inseticidas/fisiologia , Família Multigênica , Controle de Pragas , Receptores de Superfície Celular/genética
2.
Bioinformatics ; 32(17): 2577-81, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153665

RESUMO

MOTIVATION: Genome studies have become cheaper and easier than ever before, due to the decreased costs of high-throughput sequencing and the free availability of analysis software. However, the quality of genome or transcriptome assemblies can vary a lot. Therefore, quality assessment of assemblies and annotations are crucial aspects of genome analysis pipelines. RESULTS: We developed DOGMA, a program for fast and easy quality assessment of transcriptome and proteome data based on conserved protein domains. DOGMA measures the completeness of a given transcriptome or proteome and provides information about domain content for further analysis. DOGMA provides a very fast way to do quality assessment within seconds. AVAILABILITY AND IMPLEMENTATION: DOGMA is implemented in Python and published under GNU GPL v.3 license. The source code is available on https://ebbgit.uni-muenster.de/domainWorld/DOGMA/ CONTACTS: e.dohmen@wwu.de or c.kemena@wwu.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteoma , Software , Transcriptoma , Biologia Computacional , Genoma
3.
J Proteome Res ; 15(3): 788-94, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26709623

RESUMO

Proteomics data integration has become a broad field with a variety of programs offering innovative algorithms to analyze increasing amounts of data. Unfortunately, this software diversity leads to many problems as soon as the data is analyzed using more than one algorithm for the same task. Although it was shown that the combination of multiple peptide identification algorithms yields more robust results, it is only recently that unified approaches are emerging; however, workflows that, for example, aim to optimize search parameters or that employ cascaded style searches can only be made accessible if data analysis becomes not only unified but also and most importantly scriptable. Here we introduce Ursgal, a Python interface to many commonly used bottom-up proteomics tools and to additional auxiliary programs. Complex workflows can thus be composed using the Python scripting language using a few lines of code. Ursgal is easily extensible, and we have made several database search engines (X!Tandem, OMSSA, MS-GF+, Myrimatch, MS Amanda), statistical postprocessing algorithms (qvality, Percolator), and one algorithm that combines statistically postprocessed outputs from multiple search engines ("combined FDR") accessible as an interface in Python. Furthermore, we have implemented a new algorithm ("combined PEP") that combines multiple search engines employing elements of "combined FDR", PeptideShaker, and Bayes' theorem.


Assuntos
Algoritmos , Proteômica/métodos , Ferramenta de Busca , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Peptídeos/análise , Software
4.
STAR Protoc ; 3(3): 101555, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072757

RESUMO

Single-cell nucleosome, methylome, and transcriptome (scNMT) sequencing is a recently developed method that allows multiomics profiling of single cells. In this scNMT protocol, we describe profiling of cells from mouse brain and pancreatic organoids, using liquid handling platforms to increase throughput from 96-well to 384-well plate format. Our approach miniaturizes reaction volumes and incorporates the latest Smart-seq3 protocol to obtain higher numbers of detected genes and genomic DNA (gDNA) CpGs per cell. We outline normalization steps to optimally distribute per-cell sequencing depth. For complete details on the use and execution of this protocol, please refer to Clark (2019), Clark et al. (2018), and Clark et al., 2018, Hagemann-Jensen et al., 2020a, Hagemann-Jensen et al., 2020b.


Assuntos
Epigenoma , Nucleossomos , Animais , Encéfalo , Camundongos , Organoides , Transcriptoma
5.
Mol Ther Methods Clin Dev ; 23: 33-50, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553001

RESUMO

The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%-60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.

6.
Nat Ecol Evol ; 2(3): 557-566, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29403074

RESUMO

Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.


Assuntos
Blattellidae/genética , Evolução Molecular , Genoma , Isópteros/genética , Comportamento Social , Animais , Evolução Biológica , Blattellidae/fisiologia , Isópteros/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA