Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(7): e18191, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494860

RESUMO

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Assuntos
Histonas , Fibrose Pulmonar Idiopática , Humanos , Histonas/metabolismo , Acetilglucosamina/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
2.
Pulm Pharmacol Ther ; 86: 102301, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797221

RESUMO

Elexacaftor, tezacaftor, ivacaftor (ETI) is a CFTR modulator combination approved for use in ∼90 % of people with cystic fibrosis (pwCF) over 2 years old. While most pwCF tolerate this therapy well, some are intolerant to standard dosing, and others show little response. Clinical providers may adjust ETI dosing to combat these issues, but these adjustments are not well guided by pharmacokinetic evidence. Our post-approval study aimed to describe pharmacokinetic variability of ETI plasma concentrations in 15 participants who were administered a standard or reduced dose. ETI were quantified by LC-MS/MS in plasma samples taken prior to the morning dose. Results showed non-significant differences for each compound regardless of dosing regimen and after dose equivalence normalization. The majority of participants in both dosing groups had concentrations expected to elicit clinical response to ETI therapy. These findings indicate that dose reduction may be a viable strategy to maintain clinical benefit while managing intolerance.

3.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298683

RESUMO

Fibroblast growth factors (FGFs) and their cognate receptors (FGFRs) are important biological molecules with a wide array of pleiotropic functions [...].


Assuntos
Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Fosforilação
4.
Medicina (Kaunas) ; 59(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37763754

RESUMO

Background and Objectives: Chronic inflammation due to Pseudomonas aeruginosa (PA) infection in people with cystic fibrosis (CF) remains a concerning issue in the wake of modulator therapy initiation. Given the perpetuating cycle of colonization, infection, chronic inflammation, and recurrent injury to the lung, there are increases in the risk for mortality in the CF population. We have previously shown that fibroblast growth factor (FGF) 23 can exaggerate transforming growth factor (TGF) beta-mediated bronchial inflammation in CF. Our study aims to shed light on whether FGF23 signaling also plays a role in PA infection of the CF bronchial epithelium. Materials and Methods: CF bronchial epithelial cells were pretreated with FGF23 or inhibitors for FGF receptors (FGFR) and then infected with different PA isolates. After infection, immunoblot analyses were performed on these samples to assess the levels of phosphorylated phospholipase C gamma (PLCγ), total PLCγ, phosphorylated extracellular signal-regulated kinase (ERK), and total ERK. Additionally, the expression of FGFRs and interleukins at the transcript level (RT-qPCR), as well as production of interleukin (IL)-6 and IL-8 at the protein level (ELISA) were determined. Results: Although there were decreases in isoform-specific FGFRs with increases in interleukins at the mRNA level as well as phosphorylated PLCγ and the production of IL-8 protein with PA infection, treatment with FGF23 or FGFR blockade did not alter downstream targets such as IL-6 and IL-8. Conclusions: FGF23 signaling does not seem to modulate the PA-mediated inflammatory response of the CF bronchial epithelium.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Fibrose Cística/complicações , Fibrose Cística/genética , Fibrose Cística/metabolismo , Interleucina-8/metabolismo , Fator de Crescimento de Fibroblastos 23 , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/metabolismo , Inflamação/metabolismo , Interleucinas/metabolismo , Interleucina-6/metabolismo , Epitélio/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L625-L640, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35272496

RESUMO

Chronic illnesses rarely present in a vacuum, devoid of other complications, and chronic kidney disease is hardly an exception. Comorbidities associated with chronic kidney disease lead to faster disease progression, expedited dialysis dependency, and a higher mortality rate. Although chronic kidney disease is most commonly accompanied by cardiovascular diseases and diabetes, there is clear cross talk between the lungs and kidneys pH balance, phosphate metabolism, and immune system regulation. Our present understanding of the exact underlying mechanisms that contribute to chronic kidney disease-related pulmonary disease is poor. This review summarizes the current research on kidney-pulmonary interorgan cross talk in the context of chronic kidney disease, highlighting various acute and chronic pulmonary diseases that lead to further complications in patient care. Treatment options for patients presenting with chronic kidney disease and lung disease are explored by assessing activated molecular pathways and the body's compensatory response mechanisms following homeostatic imbalance. Understanding the link between the lungs and kidneys will potentially improve health outcomes for patients and guide healthcare professionals to better understand how and when to treat each of the pulmonary comorbidities that can present with chronic kidney disease.


Assuntos
Pneumopatias , Insuficiência Renal Crônica , Doença Crônica , Feminino , Humanos , Rim/metabolismo , Pulmão , Pneumopatias/metabolismo , Masculino , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo
6.
Int J Mol Sci ; 21(18)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967225

RESUMO

Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.


Assuntos
Envelhecimento , Senescência Celular , Epigênese Genética , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Homeostase do Telômero , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Humanos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/terapia
7.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L141-L154, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042083

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia that mainly affects the elderly. Several reports have demonstrated that aging is involved in the underlying pathogenic mechanisms of IPF. α-Klotho (KL) has been well characterized as an "age-suppressing" hormone and can provide protection against cellular senescence and oxidative stress. In this study, KL levels were assessed in human plasma and primary lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF-FB) and in lung tissue from mice exposed to bleomycin, which showed significant downregulation when compared with controls. Conversely, transgenic mice overexpressing KL were protected against bleomycin-induced lung fibrosis. Treatment of human lung fibroblasts with recombinant KL alone was not sufficient to inhibit transforming growth factor-ß (TGF-ß)-induced collagen deposition and inflammatory marker expression. Interestingly, fibroblast growth factor 23 (FGF23), a proinflammatory circulating protein for which KL is a coreceptor, was upregulated in IPF and bleomycin lungs. To our surprise, FGF23 and KL coadministration led to a significant reduction in fibrosis and inflammation in IPF-FB; FGF23 administration alone or in combination with KL stimulated KL upregulation. We conclude that in IPF downregulation of KL may contribute to fibrosis and inflammation and FGF23 may act as a compensatory antifibrotic and anti-inflammatory mediator via inhibition of TGF-ß signaling. Upon restoration of KL levels, the combination of FGF23 and KL leads to resolution of inflammation and fibrosis. Altogether, these data provide novel insight into the FGF23/KL axis and its antifibrotic/anti-inflammatory properties, which opens new avenues for potential therapies in aging-related diseases like IPF.


Assuntos
Lesão Pulmonar Aguda/patologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Glucuronidase/genética , Fibrose Pulmonar Idiopática/genética , Transdução de Sinais/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Idoso , Animais , Bleomicina/administração & dosagem , Estudos de Casos e Controles , Colágeno/antagonistas & inibidores , Colágeno/genética , Colágeno/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Glucuronidase/metabolismo , Glucuronidase/farmacologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Testes de Função Renal , Proteínas Klotho , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Testes de Função Respiratória , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia
8.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847126

RESUMO

Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Neovascularização Patológica/enzimologia , Adulto , Animais , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Neovascularização Patológica/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
9.
Int J Mol Sci ; 20(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075857

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory airway disease punctuated by exacerbations (AECOPD). Subjects with frequent AECOPD, defined by having at least two exacerbations per year, experience accelerated loss of lung function, deterioration in quality of life and increase in mortality. Fibroblast growth factor (FGF)23, a hormone associated with systemic inflammation and altered metabolism is elevated in COPD. However, associations between FGF23 and AECOPD are unknown. In this cross-sectional study, individuals with COPD were enrolled between June 2016 and December 2016. Plasma samples were analyzed for intact FGF23 levels. Logistic regression analyses were used to measure associations between clinical variables, FGF23, and the frequent exacerbator phenotype. Our results showed that FGF23 levels were higher in frequent exacerbators as compared to patients without frequent exacerbations. FGF23 was also independently associated with frequent exacerbations (OR 1.02; 95%CI 1.004-1.04; p = 0.017), after adjusting for age, lung function, smoking, and oxygen use. In summary, FGF23 was associated with the frequent exacerbator phenotype and correlated with number of exacerbations recorded retrospectively and prospectively. Further studies are needed to explore the role of FGF 23 as a possible biomarker for AECOPD to better understand the pathobiology of COPD and to help develop therapeutic targets.


Assuntos
Progressão da Doença , Fatores de Crescimento de Fibroblastos/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Idoso , Estudos de Coortes , Estudos Transversais , Feminino , Fator de Crescimento de Fibroblastos 23 , Humanos , Masculino , Fenótipo , Projetos Piloto
10.
Eur Respir J ; 52(1)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29748308

RESUMO

Circulating levels of fibroblast growth factor (FGF)23 are associated with systemic inflammation and increased mortality in chronic kidney disease. α-Klotho, a co-receptor for FGF23, is downregulated in chronic obstructive pulmonary disease (COPD). However, whether FGF23 and Klotho-mediated FGF receptor (FGFR) activation delineates a pathophysiological mechanism in COPD remains unclear. We hypothesised that FGF23 can potentiate airway inflammation via Klotho-independent FGFR4 activation.FGF23 and its effect were studied using plasma and transbronchial biopsies from COPD and control patients, and primary human bronchial epithelial cells isolated from COPD patients as well as a murine COPD model.Plasma FGF23 levels were significantly elevated in COPD patients. Exposure of airway epithelial cells to cigarette smoke and FGF23 led to a significant increase in interleukin-1ß release via Klotho-independent FGFR4-mediated activation of phospholipase Cγ/nuclear factor of activated T-cells signalling. In addition, Klotho knockout mice developed COPD and showed airway inflammation and elevated FGFR4 expression in their lungs, whereas overexpression of Klotho led to an attenuation of airway inflammation.Cigarette smoke induces airway inflammation by downregulation of Klotho and activation of FGFR4 in the airway epithelium in COPD. Inhibition of FGF23 or FGFR4 might serve as a novel anti-inflammatory strategy in COPD.


Assuntos
Fatores de Crescimento de Fibroblastos/sangue , Glucuronidase/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/sangue , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Adulto , Idoso , Animais , Células Epiteliais/metabolismo , Feminino , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/genética , Humanos , Inflamação/patologia , Proteínas Klotho , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos
11.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380761

RESUMO

Cytokines are key players in the initiation and propagation of inflammation in chronic inflammatory airway diseases such as chronic obstructive pulmonary disease (COPD), bronchiectasis and allergic asthma. This makes them attractive targets for specific novel anti-inflammatory treatment strategies. Recently, both interleukin-1 (IL-1) and IL-6 have been associated with negative health outcomes, mortality and a pro-inflammatory phenotype in COPD. IL-6 in COPD was shown to correlate negatively with lung function, and IL-1beta was induced by cigarette smoke in the bronchial epithelium, causing airway inflammation. Furthermore, IL-8 has been shown to be a pro-inflammatory marker in bronchiectasis, COPD and allergic asthma. Clinical trials using specific cytokine blockade therapies are currently emerging and have contributed to reduce exacerbations and steroid use in COPD. Here, we present a review of the current understanding of the roles of cytokines in the pathophysiology of chronic inflammatory airway diseases. Furthermore, outcomes of clinical trials in cytokine blockade as novel treatment strategies for selected patient populations with those diseases will be discussed.


Assuntos
Asma , Bronquiectasia , Citocinas/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória , Animais , Asma/imunologia , Asma/patologia , Asma/terapia , Bronquiectasia/imunologia , Bronquiectasia/patologia , Bronquiectasia/terapia , Citocinas/imunologia , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/terapia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia
13.
J Biol Chem ; 291(12): 6423-32, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26823467

RESUMO

Human airway epithelial cells express pannexin 1 (Panx1) channels to release ATP, which regulates mucociliary clearance. Airway inflammation causes mucociliary dysfunction. Exposure of primary human airway epithelial cell cultures to IFN-γ for 48 h did not alter Panx1 protein expression but significantly decreased ATP release in response to hypotonic stress. The IFN-γ-induced functional down-regulation of Panx1 was due to the up-regulation of dual oxidase 2 (Duox2). Duox2 suppression by siRNA led to an increase in ATP release in control cells and restoration of ATP release in cells treated with IFN-γ. Both effects were reduced by the pannexin inhibitor probenecid. Duox2 up-regulation stoichiometrically increases H2O2 and proton production. H2O2 inhibited Panx1 function temporarily by formation of disulfide bonds at the thiol group of its terminal cysteine. Long-term exposure to H2O2, however, had no inhibitory effect. To assess the role of cellular acidification upon IFN-γ treatment, fully differentiated airway epithelial cells were exposed to ammonium chloride to alkalinize the cytosol. This led to a 2-fold increase in ATP release in cells treated with IFN-γ that was also inhibited by probenecid. Duox2 knockdown also partially corrected IFN-γ-mediated acidification. The direct correlation between intracellular pH and Panx1 open probability was shown in oocytes. Therefore, airway epithelial cells release less ATP in response to hypotonic stress in an inflammatory environment (IFN-γ exposure). Decreased Panx1 function is a response to cell acidification mediated by IFN-γ-induced up-regulation of Duox2, representing a novel mechanism for mucociliary dysfunction in inflammatory airway diseases.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Células Epiteliais/enzimologia , NADPH Oxidases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Brônquios/citologia , Células Cultivadas , Oxidases Duais , Indução Enzimática , Humanos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Interferon gama/fisiologia , Potenciais da Membrana , Oócitos/enzimologia , Cultura Primária de Células , Mucosa Respiratória/citologia , Xenopus
14.
J Biol Chem ; 290(42): 25710-6, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26338706

RESUMO

Transforming growth factor ß1 (TGF-ß1) is not only elevated in airways of cystic fibrosis (CF) patients, whose airways are characterized by abnormal ion transport and mucociliary clearance, but TGF-ß1 is also associated with worse clinical outcomes. Effective mucociliary clearance depends on adequate airway hydration, governed by ion transport. Apically expressed, large-conductance, Ca(2+)- and voltage-dependent K(+) (BK) channels play an important role in this process. In this study, TGF-ß1 decreased airway surface liquid volume, ciliary beat frequency, and BK activity in fully differentiated CF bronchial epithelial cells by reducing mRNA expression of the BK γ subunit leucine-rich repeat-containing protein 26 (LRRC26) and its function. Although LRRC26 knockdown itself reduced BK activity, LRRC26 overexpression partially reversed TGF-ß1-induced BK dysfunction. TGF-ß1-induced airway surface liquid volume hyper-absorption was reversed by the BK opener mallotoxin and the clinically useful TGF-ß signaling inhibitor pirfenidone. The latter increased BK activity via rescue of LRRC26. Therefore, we propose that TGF-ß1-induced mucociliary dysfunction in CF airways is associated with BK inactivation related to a LRRC26 decrease and is amenable to treatment with clinically useful TGF-ß1 inhibitors.


Assuntos
Brônquios/patologia , Fibrose Cística/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Piridonas/farmacologia , Fator de Crescimento Transformador beta1/fisiologia , Trifosfato de Adenosina/metabolismo , Brônquios/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Técnicas de Silenciamento de Genes , Humanos , Depuração Mucociliar/efeitos dos fármacos , Proteínas de Neoplasias/genética , Piridonas/uso terapêutico , Fator de Crescimento Transformador beta1/antagonistas & inibidores
15.
Kidney Int ; 90(5): 985-996, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27457912

RESUMO

Patients with chronic kidney disease (CKD) develop increased levels of the phosphate-regulating hormone, fibroblast growth factor (FGF) 23, that are associated with a higher risk of mortality. Increases in inflammatory markers are another common feature that predicts poor clinical outcomes. Elevated FGF23 is associated with higher circulating levels of inflammatory cytokines in CKD, which can stimulate osteocyte production of FGF23. Here, we studied whether FGF23 can directly stimulate hepatic production of inflammatory cytokines in the absence of α-klotho, an FGF23 coreceptor in the kidney that is not expressed by hepatocytes. By activating FGF receptor isoform 4 (FGFR4), FGF23 stimulated calcineurin signaling in cultured hepatocytes, which increased the expression and secretion of inflammatory cytokines, including C-reactive protein. Elevating serum FGF23 levels increased hepatic and circulating levels of C-reactive protein in wild-type mice, but not in FGFR4 knockout mice. Administration of an isoform-specific FGFR4 blocking antibody reduced hepatic and circulating levels of C-reactive protein in the 5/6 nephrectomy rat model of CKD. Thus, FGF23 can directly stimulate hepatic secretion of inflammatory cytokines. Our findings indicate a novel mechanism of chronic inflammation in patients with CKD and suggest that FGFR4 blockade might have therapeutic anti-inflammatory effects in CKD.


Assuntos
Citocinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Calcineurina/metabolismo , Fator de Crescimento de Fibroblastos 23 , Glucuronidase/metabolismo , Humanos , Proteínas Klotho , Camundongos , Fatores de Transcrição NFATC/metabolismo , Fosfolipase C gama/metabolismo , Cultura Primária de Células , Ratos , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
17.
Respir Res ; 16: 135, 2015 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-26521141

RESUMO

BACKGROUND: Phosphodiesterases (PDEs) break down cAMP, thereby regulating intracellular cAMP concentrations and diffusion. Since PDE4 predominates in airway epithelial cells, PDE4 inhibitors can stimulate Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by increasing cAMP. Tobacco smoking and COPD are associated with decreased CFTR function and impaired mucociliary clearance (MCC). However, the effects of the PDE4 inhibitor roflumilast on smoke-induced mucociliary dysfunction have not been fully explored. METHODS: Primary normal human bronchial epithelial cells (NHBE) from non-smokers, cultured at the air-liquid interface (ALI) were used for most experiments. Cultures were exposed to cigarette smoke in a Vitrocell VC-10 smoking robot. To evaluate the effect of roflumilast on intracellular cAMP concentrations, fluorescence resonance energy transfer (FRET) between CFP- and YFP-tagged protein kinase A (PKA) subunits was recorded. Airway surface liquid (ASL) was measured using light refraction scanning and ciliary beat frequency (CBF) employing infrared differential interference contrast microscopy. Chloride conductance was measured in Ussing chambers and CFTR expression was quantified with qPCR. RESULTS: While treatment with 100 nM roflumilast had little effect alone, it increased intracellular cAMP upon stimulation with forskolin and albuterol in cultures exposed to cigarette smoke and in control conditions. cAMP baselines were lower in smoke-exposed cells. Roflumilast prolonged cAMP increases in smoke-exposed and control cultures. Smoke-induced reduction in functional, albuterol-mediated chloride conductance through CFTR was improved by roflumilast. ASL volumes also increased in smoke-exposed cultures in the presence of roflumilast while it did not in its absence. Cigarette smoke exposure decreased CBF, an effect rescued with roflumilast, particularly when used together with the long-acting ß-mimetic formoterol. Roflumilast also enhanced forskolin-induced CBF stimulation in ASL volume supplemented smoked and control cells, confirming the direct stimulatory effect of rising cAMP on ciliary function. In active smokers, CFTR mRNA expression was increased compared to non-smokers and ex-smokers. Roflumilast also increased CFTR mRNA levels in cigarette-smoke exposed cell cultures. CONCLUSIONS: Our results show that roflumilast can rescue smoke-induced mucociliary dysfunction by reversing decreased CFTR activity, augmenting ASL volume, and stimulating CBF, the latter particularly in combination with formoterol. As expected, CFTR mRNA expression was not indicative of apical CFTR function.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Depuração Mucociliar/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Fumaça , Fumar/efeitos adversos , Albuterol/farmacologia , Técnicas Biossensoriais , Brônquios/metabolismo , Brônquios/fisiopatologia , Células Cultivadas , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclopropanos/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Transferência Ressonante de Energia de Fluorescência , Fumarato de Formoterol/farmacologia , Humanos , RNA Mensageiro/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo , Transfecção
18.
Am J Physiol Renal Physiol ; 306(11): F1372-80, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24598802

RESUMO

Mitochondrial dysfunction is increasingly recognized as contributing to glomerular diseases, including those secondary to mitochondrial DNA (mtDNA) mutations and deletions. Mitochondria maintain cellular redox and energy homeostasis and are a major source of intracellular reactive oxygen species (ROS) production. Mitochondrial ROS accumulation may contribute to stress-induced mitochondrial dysfunction and apoptosis and thereby to glomerulosclerosis. In mice, deletion of the gene encoding Mpv17 is associated with glomerulosclerosis, but the underlying mechanism remains poorly defined. Here we report that Mpv17 localizes to mitochondria of podocytes and its expression is reduced in several glomerular injury models and in human focal segmental glomerulosclerosis (FSGS) but not in minimal change disease. Using models of mild or severe nephrotoxic serum nephritis (NTSN) in Mpv17(+/+) wild-type (WT) and Mpv17(-/-) knockout mice, we found that Mpv17 deficiency resulted in increased proteinuria (mild NTSN) and renal insufficiency (severe NTSN) compared with WT. These lesions were associated with increased mitochondrial ROS generation and mitochondrial injury such as oxidative DNA damage. In vitro, podocytes with loss of Mpv17 function were characterized by increased susceptibility to apoptosis and ROS injury including decreased mitochondrial function, loss of mtDNA content, and change in mitochondrial configuration. In summary, the inner mitochondrial membrane protein Mpv17 in podocytes is essential for the maintenance of mitochondrial homeostasis and protects podocytes against oxidative stress-induced injury both in vitro and in vivo.


Assuntos
Apoptose/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Nefrite/metabolismo , Estresse Oxidativo/fisiologia , Podócitos/metabolismo , Animais , Modelos Animais de Doenças , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Nefrite/patologia , Podócitos/patologia , Proteinúria/metabolismo , Proteinúria/patologia , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 14(1): 16568, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019950

RESUMO

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Assuntos
Mucina-5B , Muco , Humanos , Animais , Mucina-5B/metabolismo , Ratos , Muco/metabolismo , Sialiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Depuração Mucociliar , Mucosa Respiratória/metabolismo , Fibrose Cística/metabolismo , Mucinas/metabolismo , Células Epiteliais/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Brônquios/metabolismo
20.
Res Sq ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38853971

RESUMO

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA