Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Protein Expr Purif ; 183: 105839, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33746079

RESUMO

Spider silk, which has remarkable mechanical properties, is a natural protein fiber produced by spiders. Spiders cannot be farmed because of their cannibalistic and territorial nature. Hence, large amounts of spider silk cannot be produced from spiders. Genetic engineering is an alternative approach to produce large quantities of spider silk. Our group has produced synthetic spider silk proteins in E. coli to study structure/function and to produce biomaterials comparable to the silks produced by orb-weaving spiders. Here we give a detailed description of our cloning, expression, and purification methods of synthetic spider silk proteins ranging from ~30 to ~200 kDa. We have cloned the relevant genes of the spider Nephila clavipes and introduced them into bacteria to produce synthetic spider silk proteins using small and large-scale bioreactors. We have optimized the fermentation process, and we have developed protein purification methods as well. The purified proteins are spun into fibers and are used to make alternative materials like films and adhesives with various possible commercial applications.


Assuntos
Proteínas de Artrópodes , Escherichia coli , Expressão Gênica , Seda , Aranhas/genética , Animais , Proteínas de Artrópodes/biossíntese , Proteínas de Artrópodes/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Seda/biossíntese , Seda/genética
2.
Arch Biochem Biophys ; 625-626: 39-53, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28587771

RESUMO

Heart disease ends the life of more people than any other disease in the United States. High levels of low density lipoprotein (LDL)-cholesterol cause heart diseases by increasing the formation of atherosclerotic plaques. Proprotein convertase subtilisin/kexin-9 (PCSK9) indirectly regulates plasma LDL levels by controlling the LDL receptor expression at the plasma membrane. PCSK9 also appears to modulate glucose intolerance, insulin resistance, abdominal obesity, inflammation, and hypertension. The magnitude of PCSK9's involvement in the onset of these metabolic abnormalities appears to be associated with age, sex, and ethnic background. Another regulator, the inducible degrader of the LDL receptor (IDOL), works by enhancing the ubiquitination of the LDL receptor. Herein, we will review the functions and regulatory mechanisms of PCSK9. The effects of PCSK9 on the LDL receptor, the relationship of this convertase with IDOL, and treatments currently available against hypercholesterolemia are also discussed.


Assuntos
Hipercolesterolemia/metabolismo , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/metabolismo , Animais , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Pró-Proteína Convertase 9/análise , Receptores de LDL/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Langmuir ; 27(3): 1000-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21207952

RESUMO

We report the self-assembly of monolayers of spider silk-like block copolymers. Langmuir isotherms were obtained for a series of bioengineered variants of the spider silks, and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers onto silica substrates and were subsequently analyzed by atomic force microscopy (AFM). Static contact angle measurements were performed to characterize interactions across the interface (thin film, water, air), and molecular modeling was used to predict 3D conformation of spider silk-like block copolymers. The influence of molecular architecture and volume fraction of the proteins on the self-assembly process was assessed. At high surface pressure, spider silk-like block copolymers with minimal hydrophobic block (f(A) = 12%) formed oblate structures, whereas block copolymer with a 6-fold larger hydrophobic domain (f(A) = 46%) formed prolate structures. The varied morphologies obtained with increased hydrophobicity offer new options for biomaterials for coatings and related options. The design and use of bioengineered protein block copolymers assembled at air-water interfaces provides a promising approach to compare 2D microstructures and molecular architectures of these amphiphiles, leading to more rationale designs for a range of nanoengineered biomaterial needs as well as providing a basis of comparison to more traditional synthetic block copolymer systems.


Assuntos
Polímeros/química , Seda/química , Aranhas/química , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Polímeros/metabolismo , Propriedades de Superfície
4.
Artigo em Inglês | MEDLINE | ID: mdl-32587953

RESUMO

High levels of cholesterol, especially as low-density lipoprotein (LDL), are a well-known risk factor for atherosclerotic-related diseases. The key atherogenic property of LDL is its ability to form atherosclerotic plaque. Proprotein convertase subtilisin/kexin-9 (PCSK9) is an indirect regulator of plasma LDL levels by controlling the number of LDL receptor molecules expressed at the plasma membrane, especially in the liver. Herein, we performed a combination of affinity chromatography, mass spectrometry analysis and identification, and gene expression studies to identify proteins that interact with PCSK9. Through these studies, we identified three proteins, alpha-1-antitrypsin (A1AT), alpha-1-microglobulin/bikunin precursor (AMBP), and apolipoprotein H (APOH) expressed by C3A cells that interact with PCSK9. The expression levels of A1AT and APOH increased in cells treated with MITO+ medium, a condition previously shown to affect the function of PCSK9, as compared to treating with Regular (control) medium. However, AMBP expression did not change in response to the treatments. Additional studies are required to determine which of these proteins can modulate the expression/function of PCSK9. The identification of endogenous modulators of PCSK9's function could lead to the development of novel diagnostic tests or treatment options for patients suffering hypercholesterolemia in combination with other chronic metabolic diseases.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31633088

RESUMO

Proprotein convertase subtilisin-kexin 9 (PCSK9) appears to be involved in multiple processes. A ProtoArray Human Protein Microarray was used to identify proteins interacting with biotinylated PCSK9. Fifteen novel proteins interacting with PCSK9 were identified using this technique. Only two of these proteins, sterol carrier protein 2 and hepatoma-derived growth factor, related protein 3, have known functions. The identification of proteins that could affect the expression/function of PCSK9 is of great interest due to potential implications in personalized medicine for hypercholesterolemic patients.

6.
Biomaterials ; 33(33): 8240-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22938765

RESUMO

Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Polímeros/química , Colágeno/química , Elastina/química , Seda/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA