Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(9): 3685-3699, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558127

RESUMO

Wetlands are common sites of active Hg methylation by anaerobic microbes; however, the amount of methylmercury produced varies greatly, as Hg methylation is dependent upon both the availability of Hg and the composition and activity of the microbial community involved. In this study, we identified the major microbial guilds responsible for Hg methylation along a trophic gradient composed of two sites and three different types of wetlands: a bog-fen peatland gradient and a black alder swamp, serving as net sources and a sink for methylmercury respectively. Iron-reducing bacteria in the Geobacteraceae were important Hg methylators across all wetlands and seasons examined, as evidenced by abundant 16S rRNA and hgcA transcripts clustering with this family. Molybdate inhibited Hg methylation more efficiently in the peatlands than in the swamp, suggesting an increasing role of sulfate-reducing bacteria and/or related syntrophs in the methylation of Hg with decreasing trophic status. Sulfate addition failed to increase Hg methylation rates in the peatlands, suggesting that SRBs/syntrophs were instead likely metabolizing alternative substrates such as syntrophic fermentation of organic compounds with methanogens. These results highlight the interconnectivity of anaerobic metabolism and importance of community dynamics on the methylation of Hg in wetlands with different trophic status.


Assuntos
Deltaproteobacteria/metabolismo , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Microbiota , Poluentes Químicos da Água/metabolismo , Anaerobiose , Deltaproteobacteria/genética , Metilação , Microbiota/genética , RNA Ribossômico 16S/genética , Áreas Alagadas
2.
Environ Sci Technol ; 50(17): 9177-86, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27461938

RESUMO

Final harvest (clear-cutting) of coniferous boreal forests has been shown to increase streamwater concentrations and export of the neurotoxin methyl mercury (MeHg) to freshwater ecosystems. Here, the spatial distribution of inorganic Hg and MeHg in soil as a consequence of clear-cutting is reported. A comparison of soils at similar positions along hillslopes in four 80 years old Norway spruce (Picea abies) stands (REFs) with those in four similar stands subjected to clear-cutting (CCs) revealed significantly (p < 0.05) enhanced MeHg concentrations (ng g(-1)), MeHg areal masses (g ha(-1)), and percent MeHg of HgTOT in O horizons of CCs located between 1 and 41 m from streams. Inorganic Hg measures did not differ between REFs and CCs at any position. The O horizon thickness did not differ between CCs and REFs, but the groundwater table and soil water content were significantly higher at CCs than at REFs. The largest difference in percent MeHg of HgTOT (12 times higher at CCs compared to REFs, p = 0.003) was observed in concert with a significant enhancement in soil water content (p = 0.0003) at intermediate hillslope positions (20-38 m from stream), outside the stream riparian zone. Incubation experiments demonstrated that soils having significantly enhanced soil pools of MeHg after clear-cutting also showed significantly enhanced methylation potential as compared with similarly positioned soils in mature reference stands. The addition of inhibitors demonstrated that sulfate-reducing bacteria (SRB) and methanogens were key methylators. Rates of demethylation did not differ between CCs and REFs. Our results suggest that enhanced water saturation of organic soils providing readily available electron donors stimulate Hg-methylating microbes to net formation and buildup of MeHg in O horizons after forest harvest.


Assuntos
Mercúrio , Solo , Monitoramento Ambiental , Florestas , Compostos de Metilmercúrio , Rios , Taiga , Poluentes Químicos da Água
3.
Environ Sci Technol ; 49(12): 7188-96, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25946594

RESUMO

Soils comprise the largest terrestrial mercury (Hg) pool in exchange with the atmosphere. To predict how anthropogenic emissions affect global Hg cycling and eventually human Hg exposure, it is crucial to understand Hg deposition and re-emission of legacy Hg from soils. However, assessing Hg deposition and re-emission pathways remains difficult because of an insufficient understanding of the governing processes. We measured Hg stable isotope signatures of radiocarbon-dated boreal forest soils and modeled atmospheric Hg deposition and re-emission pathways and fluxes using a combined source and process tracing approach. Our results suggest that Hg in the soils was dominantly derived from deposition of litter (∼90% on average). The remaining fraction was attributed to precipitation-derived Hg, which showed increasing contributions in older, deeper soil horizons (up to 27%) indicative of an accumulation over decades. We provide evidence for significant Hg re-emission from organic soil horizons most likely caused by nonphotochemical abiotic reduction by natural organic matter, a process previously not observed unambiguously in nature. Our data suggest that Histosols (peat soils), which exhibit at least seasonally water-saturated conditions, have re-emitted up to one-third of previously deposited Hg back to the atmosphere. Re-emission of legacy Hg following reduction by natural organic matter may therefore be an important pathway to be considered in global models, further supporting the need for a process-based assessment of land/atmosphere Hg exchange.


Assuntos
Mercúrio/análise , Solo/química , Taiga , Fracionamento Químico , Isótopos de Mercúrio , Modelos Teóricos , Peso Molecular , Poluentes do Solo/análise , Fatores de Tempo
5.
Environ Sci Technol ; 46(24): 13144-51, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23163228

RESUMO

Wetlands are generally considered to be sources of methyl mercury (MeHg) in northern temperate landscapes. However, a recent input-output mass balance study during 2007-2010 revealed a black alder (Alnus glutinosa) swamp in southern Sweden to be a consistent and significant MeHg sink, with a 30-60% loss of MeHg. The soil pool of MeHg varied substantially between years, but it always decreased with distance from the stream inlet to the swamp. The soil MeHg pool was significantly lower in the downstream as compared to the upstream half of the swamp (0.66 and 1.34 ng MeHg g⁻¹ SOC⁻¹ annual average⁻¹, respectively, one-way ANOVA, p = 0.0006). In 2008 a significant decrease of %MeHg in soil was paralleled by a significant increase in potential demethylation rate constant (k(d), p < 0.02 and p < 0.004, respectively). In contrast, the potential methylation rate constant (k(m)) was unrelated to distance (p = 0.3). Our results suggest that MeHg was net degraded in the Alnus swamp, and that it had a rapid and dynamic internal turnover of MeHg. Snapshot stream input-output measurements at eight additional Alnus glutinosa swamps in southern Sweden indicate that Alnus swamps in general are sinks for MeHg. Our findings have implications for forestry practices and landscape planning, and suggest that restored or preserved Alnus swamps may be used to mitigate MeHg produced in northern temperate landscapes.


Assuntos
Alnus/metabolismo , Compostos de Metilmercúrio/isolamento & purificação , Áreas Alagadas , Biodegradação Ambiental , Carbono/análise , Agricultura Florestal , Metilação , Estações do Ano , Solo/química , Poluentes do Solo/análise , Suécia
6.
Sci Total Environ ; 613-614: 1069-1078, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28950669

RESUMO

Earlier studies have shown that boreal forest logging can increase the concentration and export of methylmercury (MeHg) in stream runoff. Here we test whether forestry operations create soil environments of high MeHg net formation associated with distinct microbial communities. Furthermore, we test the hypothesis that Hg methylation hotspots are more prone to form after stump harvest than stem-only harvest, because of more severe soil compaction and soil disturbance. Concentrations of MeHg, percent MeHg of total Hg (THg), and bacterial community composition were determined at 200 soil sampling positions distributed across eight catchments. Each catchment was either stem-only harvested (n=3), stem- and stump-harvested (n=2) or left undisturbed (n=3). In support of our hypothesis, higher MeHg to THg ratios was observed in one of the stump-harvested catchments. While the effects of natural variation could not be ruled out, we noted that most of the highest % MeHg was observed in water-filled cavities created by stump removal or driving damage. This catchment also featured the highest bacterial diversity and highest relative abundance of bacterial families known to include Hg methylators. We propose that water-logged and disturbed soil environments associated with stump harvest can favor methylating microorganisms, which also enhance MeHg formation.

7.
Environ Sci Process Impacts ; 19(10): 1235-1248, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28825440

RESUMO

Terrestrial runoff represents a major source of mercury (Hg) to aquatic ecosystems. In boreal forest catchments, such as the one in northern Sweden studied here, mercury bound to natural organic matter (NOM) represents a large fraction of mercury in the runoff. We present a method to measure Hg stable isotope signatures of colloidal Hg, mainly complexed by high molecular weight or colloidal natural organic matter (NOM) in natural waters based on pre-enrichment by ultrafiltration, followed by freeze-drying and combustion. We report that Hg associated with high molecular weight NOM in the boreal forest runoff has very similar Hg isotope signatures as compared to the organic soil horizons of the catchment area. The mass-independent fractionation (MIF) signatures (Δ199Hg and Δ200Hg) measured in soils and runoff were in agreement with typical values reported for atmospheric gaseous elemental mercury (Hg0) and distinctly different from reported Hg isotope signatures in precipitation. We therefore suggest that most Hg in the boreal terrestrial ecosystem originated from the deposition of Hg0 through foliar uptake rather than precipitation. Using a mixing model we calculated the contribution of soil horizons to the Hg in the runoff. At moderate to high flow runoff conditions, that prevailed during sampling, the uppermost part of the organic horizon (Oe/He) contributed 50-70% of the Hg in the runoff, while the underlying more humified organic Oa/Ha and the mineral soil horizons displayed a lower mobility of Hg. The good agreement of the Hg isotope results with other source tracing approaches using radiocarbon signatures and Hg : C ratios provides additional support for the strong coupling between Hg and NOM. The exploratory results from this study illustrate the potential of Hg stable isotopes to trace the source of Hg from atmospheric deposition through the terrestrial ecosystem to soil runoff, and provide a basis for more in-depth studies investigating the mobility of Hg in terrestrial ecosystems using Hg isotope signatures.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Substâncias Húmicas/análise , Mercúrio/análise , Taiga , Fracionamento Químico , Ecossistema , Poluentes Ambientais/química , Mercúrio/química , Isótopos de Mercúrio/análise , Rios/química , Solo/química , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA