Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(8): eadk3127, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394203

RESUMO

Epigenetic dysregulation has been reported in multiple cancers including leukemias. Nonetheless, the roles of the epigenetic reader Tudor domains in leukemia progression and therapy remain unexplored. Here, we conducted a Tudor domain-focused CRISPR screen and identified SGF29, a component of SAGA/ATAC acetyltransferase complexes, as a crucial factor for H3K9 acetylation, ribosomal gene expression, and leukemogenesis. To facilitate drug development, we integrated the CRISPR tiling scan with compound docking and molecular dynamics simulation, presenting a generally applicable strategy called CRISPR-Scan Assisted Drug Discovery (CRISPR-SADD). Using this approach, we identified a lead inhibitor that selectively targets SGF29's Tudor domain and demonstrates efficacy against leukemia. Furthermore, we propose that the structural genetics approach used in our study can be widely applied to diverse fields for de novo drug discovery.


Assuntos
Leucemia , Domínio Tudor , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Acetiltransferases/metabolismo , Descoberta de Drogas , Leucemia/tratamento farmacológico , Leucemia/genética
2.
Biomedicines ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36979775

RESUMO

Peripheral mononuclear blood cells (PBMCs) are the most widely used study materials for immunomonitoring and antigen-specific T-cell identification. However, limited patient PBMCs and low-frequency antigen-specific T cells remain as significant technical challenges. To address these limitations, we established a novel platform comprised of optimized HLA-matched immortalized B cells transfected with mRNA of a prototype viral or tumor antigen conjugated to MHC class-I trafficking domain protein (MITD) to increase the efficiency of epitope expression in antigen-presenting cells (APCs) essential to expanding antigen-specific T cells. When applied to CMV as a model, the IBMAM platform could successfully expand CMV-specific T cells from low-frequency CMV PBMCs from seropositive donors. Additionally, this platform can be applied to the validation of antigen specific TCRs. Together, compared to using APCs with synthesized peptides, this platform is an unlimited, highly efficient, and cost-effective resource in detecting and expanding antigen-specific T cells and validating antigen-specific TCRs.

3.
Blood Adv ; 7(6): 918-932, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36469551

RESUMO

B-cell activating factor receptor (BAFF-R) is a mature B-cell survival receptor, which is highly expressed in a wide variety of B-cell malignancies but with minimal expression in immature B cells. These properties make BAFF-R an attractive target for therapy of B-cell lymphomas. We generated a novel humanized anti BAFF-R monoclonal antibody (mAb) with high specificity and potent in vitro and in vivo activity against B-cell lymphomas and leukemias. The humanized variants of an original chimeric BAFF-R mAb retained BAFF-R binding affinity and antibody-dependent cellular cytotoxicity (ADCC) against a panel of human cell lines and primary lymphoma samples. Furthermore, 1 humanized BAFF-R mAb clone and its afucosylated version, glycoengineered to optimize the primary mechanism of action, prolonged survival of immunodeficient mice bearing human tumor cell lines or patient-derived lymphoma xenografts in 3 separate models, compared with controls. Finally, the tissue specificity of this humanized mAb was confirmed against a broad panel of normal human tissues. Taken together, we have identified a robust lead-candidate BAFF-R mAb for clinical development.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Camundongos , Animais , Anticorpos Monoclonais/uso terapêutico , Linfócitos B , Linfoma de Células B/tratamento farmacológico , Anticorpos Monoclonais Humanizados , Linfoma/tratamento farmacológico
4.
Leukemia ; 36(4): 1015-1024, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35039637

RESUMO

Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL), but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission, we developed a dual-targeting approach using an optimized, bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release, degranulation, and cytotoxicity against both CD19-/- and BAFF-R-/- variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19-/- and BAFF-R-/- variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19-/- and BAFF-R-/- ALL variants, whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19-/BAFF-R+ or CD19+/BAFF-R- tumors, respectively. Further, CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence, raising the possibility that these cells may have the potential to promote durable remissions. Together, our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA