Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402867, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850185

RESUMO

A considerable challenge in CO2 reduction reaction (CO2RR) to produce high-value-added chemicals comes from the adsorption and activation of CO2 to form intermediates. Herein, an amino-induced spillover strategy aimed at significantly enhancing the CO2 adsorption and activation capabilities of CdS supported on N-doped mesoporous hollow carbon sphere (NH2-CdS/NMHCS) for highly efficient CO2RR is presented. The prepared NH2-CdS/NMHCS exhibits a high CO Faradaic efficiency (FECO) exceeding 90% from -0.8 to -1.1 V versus reversible hydrogen electrode (RHE) with the highest FECO of 95% at -0.9 V versus RHE in H cell. Additional experimental and theoretical investigations demonstrate that the alkaline -NH2 group functions as a potent trapping site, effectively adsorbing the acidic CO2, and subsequently triggering CO2 spillover to CdS. The amino modification-induced CO2 spillover, combined with electron redistribution between CdS and NMHCS, not only readily achieves the spontaneous activation of CO2 to *COOH but also greatly reduces the energy required for the conversion of *COOH to *CO intermediate, thus endowing NH2-CdS/NMHCS with significantly improved reaction kinetics and reduced overpotential for CO2-to-CO conversion. It is believed that this research can provide valuable insights into the development of electrocatalysts with superior CO2 adsorption and activation capabilities for CO2RR application.

2.
Chemistry ; 26(18): 4052-4062, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-31437320

RESUMO

Using bimetallic Prussian blue analogue (PBA) as a precursor is effective for preparing electrocatalysts for the oxygen evolution reaction (OER); however, the role of these PBA-derived catalysts in the OER is still ambiguous. Herein, by simply controlling synthesis temperature, a bimetallic PBA-derived O,N-codoped Ni-Fe carbide, can be well tuned to optimize structure and OER performance. Importantly, by a series of ex situ and in situ investigations, real active species of NiFeOx Hy are in situ formed on the surface during the OER, which reveals a "pre-catalyst" role of O,N-codoped Ni-Fe carbides. Furthermore, it has been successfully applied to highly efficient Zn-air batteries and outplays its RuO2 counterpart. When applied to photoelectrocatalytic water oxidation as the co-catalyst, it improves the performance of the BiVO4 photoanode by enhancing hole collecting and transporting ability. We believe this research not only provides a highly efficient and low-cost electrocatalyst for the OER, but also unveils the "pre-catalyst" role of PBA-derived materials in energy-storage and conversion devices.

3.
Small ; 12(48): 6735-6744, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27709776

RESUMO

Rational design and development of new-generation photocatalysts with high hydrogen evolution activity is recognized as an effective strategy to settle energy crisis. To this regard, hybrid photocatalysts of Au quantum dots embedded in rimous cadmium sulfide nanospheres are synthesized by using a simple hydrothermal process followed by photoreduction. The rimous cadmium sulfide nanospheres with rough surface and irregular fissures greatly strengthen their adhesion and interaction with Au quantum dots, which effectively facilitates the separation, restrains the recombination, and accelerates the consumption of photoinduced electron-hole pairs. Impressively, the highest photocatalytic activity for hydrogen generation (601.2 µmol h-1 g-1 ) and organic pollutant degradation (100% degradation in 80 min) is obtained by adjusting the Au mass loading to achieve uniform distribution. This work paves new way to the exploitation of highly efficient metal/semiconductor hybrid photocatalysts for clean energy generation and environment restoration.

4.
Chemistry ; 21(43): 15360-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26332399

RESUMO

The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications.

5.
Chemistry ; 21(12): 4614-21, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25572117

RESUMO

Three-dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high-performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D-Ni-core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as-prepared material exhibits a high specific capacitance (726 F g(-1) at a charge/discharge rate of 1 A g(-1)), good rate capability (a decay of 33% in Csp with charge/discharge rates increasing from 1 to 20 A g(-1)), and high cycle stability (only a small decrease of 4.2% in Csp after 1000 cycles at a scan rate of 100 mV s(-1)). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as-prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg(-1)) and superior long-term cycle ability (only 4.4% and 18.6% loss in Csp after 2000 and 5000 cycles, respectively).

6.
J Colloid Interface Sci ; 658: 127-136, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100969

RESUMO

Chlorine evolution reaction (CER) is a commercially valuable electrochemical reaction used at an industrial scale. However, oxygen evolution reaction (OER) during the electrolysis process inevitably leads to the decreased efficiency of CER. It is necessary to improve the selectivity of CER by minimizing or even eliminating the occurrence of OER. Herein, a ternary metal oxide (Ru0.4Sn0.3Ti0.3) electrode was fabricated and employed as an active and robust anode for CER. The Ru0.4Sn0.3Ti0.3 electrode exhibits an excellent CER performance in 6.0 M NaCl solution, with a low potential of 1.17 V (vs. saturated calomel electrode, SCE) at 200 mA cm-2 current density, a high Cl2 selectivity of over 90 %, and robust durability after consecutive operation for 160 h under 100 mA cm-2. The maximum O2-Cl2 potential difference between OER and CER further demonstrates the high Cl2 selectivity of Ru0.4Sn0.3Ti0.3 electrode. Theoretical studies show that the strong Ru 3d-Ti 3d orbitals hybridization effect makes the d-band center (εd) of Ru 3d and Ti 3d orbitals positively and negatively shifted, respectively, endowing Ru site with enhanced Cl adsorption ability (i.e. enhanced Ru-Cl interaction) and Ru0.4Sn0.3Ti0.3 electrode with superior CER activity. This work offers valuable insights into the development of advanced electrodes for CER in practical application.

7.
J Colloid Interface Sci ; 672: 423-430, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850867

RESUMO

Chlorine evolution reaction (CER) is crucial for industrial-scale production of high-purity Cl2. Despite the development of classical dimensionally stable anodes to enhance CER efficiency, the competitive oxygen evolution reaction (OER) remains a barrier to achieving high Cl2 selectivity. Herein, a binder-free electrode, Ru nanoparticles (NPs)-decorated NiMoO4 nanorod arrays (NRAs) supported on Ti foam (Ru-NiMoO4/Ti), was designed for active CER in saturated NaCl solution (pH = 2). The Ru-NiMoO4/Ti electrode exhibits a low overpotential of 20 mV at 10 mA cm-2 current density, a high Cl2 selectivity exceeding 90%, and robust durability for 90h operation. The marked difference in Tafel slopes between CER and OER indicates the high Cl2 selectivity and superior reaction kinetics of Ru-NiMoO4/Ti electrode. Further studies reveal a strong metal-support interaction (SMSI) between Ru and NiMoO4, facilitating electron transfer through the Ru-O bridge bond and increasing the Ru 3d-Cl 2p antibonding orbital occupancy, which eventually results in weakened Ru-Cl bonding, promoted Cl desorption, and enhanced Cl2 evolution. Our findings provide new insights into developing electrodes with enhanced CER performance through antibonding orbital occupancy engineering.

8.
J Colloid Interface Sci ; 674: 326-335, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38936089

RESUMO

The rational design of catalysts with atomic dispersion and a deep understanding of the catalytic mechanism is crucial for achieving high performance in CO2 reduction reaction (CO2RR). Herein, we present an atomically dispersed electrocatalyst with single Cu atom and atomic Ni clusters supported on N-doped mesoporous hollow carbon sphere (CuSANiAC/NMHCS) for highly efficient CO2RR. CuSANiAC/NMHCS demonstrates a remarkable CO Faradaic efficiency (FECO) exceeding 90% across a potential range of -0.6 to -1.2 V vs. reversible hydrogen electrode (RHE) and achieves its peak FECO of 98% at -0.9 V vs. RHE. Theoretical studies reveal that the electron redistribution and modulated electronic structure-notably the positive shift in d-band center of Ni 3d orbital-resulting from the combination of single Cu atom and atomic Ni clusters markedly enhance the CO2 adsorption, facilitate the formation of *COOH intermediate, and thus promote the CO production activity. This study offers fresh perspectives on fabricating atomically dispersed catalysts with superior CO2RR performance.

9.
Adv Mater ; 35(41): e2303030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392140

RESUMO

By providing dual active sites to synergistically accelerate H2 O dissociation and H+ reduction, ordered intermetallic alloys usually show extraordinary performance for pH-universal hydrogen evolution reaction (HER). Herein, activated N-doped mesoporous carbon spheres supported intermetallic Pt3 Fe alloys (Pt3 Fe/NMCS-A), as a highly-efficient electrocatalyst for pH-universal HER, are reported. The Pt3 Fe/NMCS-A exhibits low overpotentials (η10 ) of 13, 29, and 48 mV to deliver 10 mA cm-2 in 0.5 m H2 SO4 , 1.0 m KOH, and 1.0 m phosphate buffered solution (PBS), respectively, as well as robust stability to maintain the overall catalytic performances. Theoretical studies reveal that the strong Pt 5d-Fe 3d orbital electronic interactions negatively shift the d-band center (εd ) of Pt 5d orbital, resulting in reduced H* adsorption energy of Pt sites and enhanced acidic HER activity. With Pt and Fe acting as co-adsorption sites for H* and *OH intermediates, respectively, a low energy barrier is required for Pt3 Fe/NMCS-A to dissociate H2 O to afford H* intermediates, which greatly promotes the H* adsorption and H2 formation in alkaline and neutral conditions. The synthetic strategy is further extended to the synthesis of Pt3 Co and Pt3 Ni alloys with excellent HER activity in pH-universal electrolytes, demonstrating the great potential of these Pt-based alloys for practical applications.

10.
J Colloid Interface Sci ; 629(Pt A): 846-853, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36099850

RESUMO

Alkaline water electrolysis (AWE) offers a promising route for green hydrogen production. However, its industrial application is impeded by unsatisfactory energy conversion efficiency. Herein, a robust electrode composed of porous nickel foam (PNF) and Fe-doped Ni3S2 (Fe-Ni3S2) nanosheet arrays was fabricated and applied for industrial AWE. By conducting a scalable dynamic bubble-template method, PNF with high loading of active catalysts was prepared. The superhydrophilicity of PNF facilitates bubble detachment and promotes mass transfer, especially at high current densities. In addition, Fe-Ni3S2 with optimized electronic structure is featured with enhanced electrical conductivity, sufficient exposure of active sites, and optimized adsorption of intermediates. Benefiting from the concerted advantages of PNF and Fe-Ni3S2, the obtained Fe-Ni3S2/PNF-5 electrode with an optimal Fe content of 5 mol% exhibits high catalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the Pt/C/NF||IrO2/NF couple, the Fe-Ni3S2/PNF-5||Fe-Ni3S2/PNF-5 couple delivers a current density of 10 mA cm-2 at a low cell voltage of 1.50 V for AWE. Under industrial conditions, a competitive cell voltage of 1.75 V is needed for achieving a high current density of 400 mA cm-2. Besides, the couple can operate stably for 120 h, outperforming the commercial RN||RN couple. This work provides a novel strategy to elevate the loading amount of catalysts and improve the electrochemical performance of the electrode for practical AWE application.

11.
Nat Commun ; 12(1): 4936, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400631

RESUMO

Solar conversion of CO2 into energy-rich products is one of the sustainable solutions to lessen the global energy shortage and environmental crisis. Pitifully, it is still challenging to attain reliable and affordable CO2 conversion. Herein, we demonstrate a facile one-pot approach to design core-triple shell Mn, C-codoped ZnO hollow spheres as efficient photocatalysts for CO2 reduction. The Mn ions, with switchable valence states, function as "ionized cocatalyst" to promote the CO2 adsorption and light harvesting of the system. Besides, they can capture photogenerated electrons from the conduction band of ZnO and provide the electrons for CO2 reduction. This process is continuous due to the switchable valence states of Mn ions. Benefiting from such unique features, the prepared photocatalysts demonstrated fairly good CO2 conversion performance. This work is endeavoured to shed light on the role of ionized cocatalyst towards sustainable energy production.

12.
Adv Mater ; 33(18): e2008599, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33792090

RESUMO

The electronic metal-support interaction (EMSI) plays a crucial role in catalysis as it can induce electron transfer between metal and support, modulate the electronic state of the supported metal, and optimize the reduction of intermediate species. In this work, the tailoring of electronic structure of Pt single atoms supported on N-doped mesoporous hollow carbon spheres (Pt1 /NMHCS) via strong EMSI engineering is reported. The Pt1 /NMHCS composite is much more active and stable than the nanoparticle (PtNP ) counterpart and commercial 20 wt% Pt/C for catalyzing the electrocatalytic hydrogen evolution reaction (HER), exhibiting a low overpotential of 40 mV at a current density of 10 mA cm-2 , a high mass activity of 2.07 A mg-1 Pt at 50 mV overpotential, a large turnover frequency of 20.18 s-1 at 300 mV overpotential, and outstanding durability in acidic electrolyte. Detailed spectroscopic characterizations and theoretical simulations reveal that the strong EMSI effect in a unique N1 -Pt1 -C2 coordination structure significantly tailors the electronic structure of Pt 5d states, resulting in promoted reduction of adsorbed proton, facilitated H-H coupling, and thus Pt-like HER activity. This work provides a constructive route for precisely designing single-Pt-atom-based robust electrocatalysts with high HER activity and durability.

13.
Nanoscale Horiz ; 3(3): 317-326, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32254080

RESUMO

A new carbon allotrope, graphdiyne (GDY), with a highly π-conjugated structure of sp- and sp2-hybridized carbon networks, has recently emerged and been used as a superior carbon additive to boost the activity of water oxidation catalysts. In this work, a hybrid GDY/NiFe-LDH electrocatalyst was prepared by a facile hydrothermal treatment, which shows an outstanding catalytic activity with a low overpotential of 260 mV at 10 mA cm-2 catalytic current density and good durability towards oxygen evolution in 1.0 M KOH solution. Density functional theory (DFT) calculations prove that the sp- and sp2-hybridized GDY shows both superior electron capture and excellent electron transfer ability compared to that of the conventional sp2-hybridized carbon materials.

14.
ACS Appl Mater Interfaces ; 10(26): 22311-22319, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29888588

RESUMO

Water oxidation is the key process for many sustainable energy technologies containing artificial photosynthesis and metal-air batteries. Engineering inexpensive yet active electrocatalysts for water oxidation is mandatory for the cost-effective generation of solar fuels. Herein, we propose a novel hierarchical porous Ni-Co-mixed metal sulfide (denoted as NiCoS) on Ti3C2T x MXene via a metal-organic framework (MOF)-based approach. Benefiting from the unique structure and strong interfacial interaction between NiCoS and Ti3C2T x sheets, the hybrid guarantees an enhanced active surface area with prominent charge-transfer conductivity and thus a superior activity toward oxygen evolution reactions (OERs). Impressively, the hierarchical NiCoS in the hybrid is converted to nickel/cobalt oxyhydroxide-NiCoS assembly (denoted as NiCoOOH-NiCoS) by OER measurement, where NiCoOOH on the surface is confirmed as the intrinsic active species for the consequent water oxidation. The hybrid material is further applied to an air cathode for a rechargeable zinc-air battery, which exhibits low charging/discharging overpotential and long-term stability. Our work underscores the tuned structure and electrocatalytic OER performance of MOF derivatives by the versatility of MXenes and provides insight into the structure-activity relationship for noble metal-free catalysts.

15.
J Colloid Interface Sci ; 496: 158-166, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28222303

RESUMO

Hierarchically porous nickel-iron-layered double hydroxide (NiFe-LDH) with a Ni2+/Fe3+ molar ratio of 3 was successfully synthesised through a simple hydrothermal route. After calcination at 400°C, NiFe-LDH transformed into nickel-iron-layered double oxides (NiFe-LDO). The as-prepared samples were characterised through X-ray powder diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and nitrogen adsorption. The calcined and uncalcined NiFe-LDH was used as adsorbents to remove Congo red (CR) dye in an aqueous solution. The equilibrium adsorption data of NiFe-LDH and NiFe-LDO samples were well fitted to Langmuir model and were characterised by excellent adsorption capacities of 205 and 330mg/g, respectively. Pseudo-second-order kinetic and intra-particle diffusion models indicated that CR was well adsorbed on the adsorbent. The underlying adsorption mechanism was investigated and observed as anion exchange and reconstruction.

16.
ACS Omega ; 2(3): 852-863, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457477

RESUMO

With the gradually increasing demand for solving the environmental pollution problem and energy crisis, efficient photocatalysts with superior charge carrier separation and transfer ability have attracted extensive research attention. Herein, n-type CdS-decorated p-Cu2O/n-ZnO nanorod arrays (CdS/Cu2O/ZnO NRAs), integrating the merits of both highly ordered structure and synergistic effect derived from dual p-n junctions, were successfully fabricated and further applied to photoelectrocatalysis. In this ternary nanocomposite, fast generation, separation, and transfer of charge carriers were achieved in the Cu2O/ZnO and Cu2O/CdS dual p-n junction regions due to their built-in electric field and appropriate band structures. Moreover, both highly ordered ZnO NRAs and compact CdS shell play the role of an electron collector and a transport channel that efficiently consumes the photoinduced electrons in the conduction band of Cu2O, which considerably reduces the recombination rate of charge carriers. As expected, the perfect cooperation of the three participators leads to the highest photoconversion efficiency of 2.61% at -0.275 V (versus saturated calomel electrode) and an incident photon-to-current conversion efficiency of 14.51% at 380 nm as well as the photoelectrocatalytic degradation ability of the optimized 30 min CdS/Cu2O/ZnO NRAs photoanode as compared to that of the Cu2O/ZnO and ZnO NRAs photoanodes. It is believed that the induced synergistic effect between dual p-n junctions and ZnO NRAs caused the superior performances of the CdS/Cu2O/ZnO NRAs photoanode, and this ternary material with a unique structure may present a new way of thinking for potential applications in the photoelectrochemistry field.

17.
ACS Appl Mater Interfaces ; 7(30): 16387-94, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26171978

RESUMO

The effective separation and transport of photoinduced electron-hole pairs in photoanodes is of great significance to photoelectrochemical and catalytic performance. Here, a facile and effective two-step strategy is developed to fabricate double-shelled ZnO/CdS/CdSe porous nanotube photoanodes from ZnO nanorod arrays (NRAs). Surprisingly, after the process of the deposition of CdS and CdSe, the ZnO nanorod arrays are partially dissolved, resulting in the formation of ZnO/CdS/CdSe porous nanotube arrays (NTAs). By virtue of their unique porous nanotube structure and cosensitization effect, the ZnO/CdS/CdSe porous NTAs show superior photoelectrochemical water-splitting performance and organic-pollutant-degradation ability under visible light irradiation, as well as excellent long-term photostability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA