Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 98(5): 813-825, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30730075

RESUMO

Hormone- and stress-induced shuttling of signaling or regulatory proteins is an important cellular mechanism to modulate hormone signaling and cope with abiotic stress. Hormone-induced ubiquitination plays a crucial role to determine the half-life of key negative regulators of hormone signaling. For ABA signaling, the degradation of clade-A PP2Cs, such as PP2CA or ABI1, is a complementary mechanism to PYR/PYL/RCAR-mediated inhibition of PP2C activity. ABA promotes the degradation of PP2CA through the RGLG1 E3 ligase, although it is not known how ABA enhances the interaction of RGLG1 with PP2CA given that they are predominantly found in the plasma membrane and the nucleus, respectively. We demonstrate that ABA modifies the subcellular localization of RGLG1 and promotes nuclear interaction with PP2CA. We found RGLG1 is myristoylated in vivo, which facilitates its attachment to the plasma membrane. ABA inhibits the myristoylation of RGLG1 through the downregulation of N-myristoyltransferase 1 (NMT1) and promotes nuclear translocation of RGLG1 in a cycloheximide-insensitive manner. Enhanced nuclear recruitment of the E3 ligase was also promoted by increasing PP2CA protein levels and the formation of RGLG1-receptor-phosphatase complexes. We show that RGLG1Gly2Ala mutated at the N-terminal myristoylation site shows constitutive nuclear localization and causes an enhanced response to ABA and salt or osmotic stress. RGLG1/5 can interact with certain monomeric ABA receptors, which facilitates the formation of nuclear complexes such as RGLG1-PP2CA-PYL8. In summary, we provide evidence that an E3 ligase can dynamically relocalize in response to both ABA and increased levels of its target, which reveals a mechanism to explain how ABA enhances RGLG1-PP2CA interaction and hence PP2CA degradation.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteína Fosfatase 2C/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Aciltransferases/metabolismo , Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Ácido Mirístico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
2.
Plant Physiol ; 171(4): 2317-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252306

RESUMO

In eukaryotes, subcellular compartments such as mitochondria, the endoplasmic reticulum, lysosomes, and vacuoles have the capacity for Ca(2+) transport across their membranes to modulate the activity of compartmentalized enzymes or to convey specific cellular signaling events. In plants, it has been suggested that chloroplasts also display Ca(2+) regulation. So far, monitoring of stromal Ca(2+) dynamics in vivo has exclusively relied on using the luminescent Ca(2+) probe aequorin. However, this technique is limited in resolution and can only provide a readout averaged over chloroplast populations from different cells and tissues. Here, we present a toolkit of Arabidopsis (Arabidopsis thaliana) Ca(2+) sensor lines expressing plastid-targeted FRET-based Yellow Cameleon (YC) sensors. We demonstrate that the probes reliably report in vivo Ca(2+) dynamics in the stroma of root plastids in response to extracellular ATP and of leaf mesophyll and guard cell chloroplasts during light-to-low-intensity blue light illumination transition. Applying YC sensing of stromal Ca(2+) dynamics to single chloroplasts, we confirm findings of gradual, sustained stromal Ca(2+) increases at the tissue level after light-to-low-intensity blue light illumination transitions, but monitor transient Ca(2+) spiking as a distinct and previously unknown component of stromal Ca(2+) signatures. Spiking was dependent on the availability of cytosolic Ca(2+) but not synchronized between the chloroplasts of a cell. In contrast, the gradual sustained Ca(2+) increase occurred independent of cytosolic Ca(2+), suggesting intraorganellar Ca(2+) release. We demonstrate the capacity of the YC sensor toolkit to identify novel, fundamental facets of chloroplast Ca(2+) dynamics and to refine the understanding of plastidial Ca(2+) regulation.


Assuntos
Equorina/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio , Cálcio/metabolismo , Equorina/genética , Arabidopsis/citologia , Arabidopsis/genética , Transporte Biológico , Cloroplastos/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Proteínas Recombinantes de Fusão , Vacúolos/metabolismo
3.
Dev Cell ; 48(5): 697-709.e5, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30861376

RESUMO

Calcium signals act as universal second messengers that trigger many cellular processes in animals and plants, but how specific calcium signals are generated is not well understood. In this study, we determined that AtANN4, a putative calcium-permeable transporter, and its interacting proteins, SCaBP8 and SOS2, generate a calcium signal under salt stress, which initially activates the SOS pathway, a conserved mechanism that modulates ion homeostasis in plants under salt stress. After activation, SCaBP8 promotes the interaction of protein kinase SOS2 with AtANN4, which enhances its phosphorylation by SOS2. This phosphorylation of AtANN4 further increases its interaction with SCaBP8. Both the interaction with and phosphorylation of AtANN4 repress its activity and alter calcium transients and signatures in HEK cells and plants. Our results reveal how downstream targets are required to create a specific calcium signal via a negative feedback regulatory loop, thereby enhancing our understanding of the regulation of calcium signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Salino/fisiologia , Arabidopsis/metabolismo , Homeostase/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA