Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 58(5): 658-667, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29100477

RESUMO

Hyperproliferative endothelial cells (ECs) play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). Anoctamin (Ano)-1, a calcium-activated chloride channel, can regulate cell proliferation and cell cycle in multiple cell types. However, the expression and function of Ano1 in the pulmonary endothelium is unknown. We examined whether Ano1 was expressed in pulmonary ECs and if altering Ano1 activity would affect EC survival. Expression and localization of Ano1 in rat lung microvascular ECs (RLMVECs) was assessed using immunoblot, immunofluorescence, and subcellular fractionation. Cell counts, flow cytometry, and caspase-3 activity were used to assess changes in cell number and apoptosis in response to the small molecule Ano1 activator, Eact. Changes in mitochondrial membrane potential and mitochondrial reactive oxygen species (mtROS) were assessed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine, iodide (mitochondrial membrane potential dye) and mitochondrial ROS dye, respectively. Ano1 is expressed in RLMVECs and is enriched in the mitochondria. Activation of Ano1 with Eact reduced RLMVEC counts through increased apoptosis. Ano1 knockdown blocked the effects of Eact. Ano1 activation increased mtROS, reduced mitochondrial membrane potential, increased p38 phosphorylation, and induced release of apoptosis-inducing factor. mtROS inhibition attenuated Eact-mediated p38 phosphorylation. Pulmonary artery ECs isolated from patients with idiopathic PAH (IPAH) had higher expression of Ano1 and increased cell counts compared with control subjects. Eact treatment reduced cell counts in IPAH cells, which was associated with increased apoptosis. In summary, Ano1 is expressed in lung EC mitochondria. Activation of Ano1 promotes apoptosis of pulmonary ECs and human IPAH-pulmonary artery ECs, likely via increased mtROS and p38 phosphorylation, leading to apoptosis.


Assuntos
Anoctamina-1/agonistas , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Pulmão/irrigação sanguínea , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Anoctamina-1/metabolismo , Estudos de Casos e Controles , Hipóxia Celular , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Hipertensão Pulmonar Primária Familiar/enzimologia , Hipertensão Pulmonar Primária Familiar/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L748-L759, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258105

RESUMO

Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/patologia , Ventrículos do Coração/patologia , Miocárdio/patologia , Fumar/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/diagnóstico por imagem , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos AKR , Nicotina/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-delta/metabolismo , Ratos Sprague-Dawley , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/complicações , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Pulm Circ ; 10(2): 2045894020925762, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523689

RESUMO

Pulmonary hypertension is associated with pronounced exercise intolerance (decreased V c O2 max) that can significantly impact quality of life. The cause of exercise intolerance in pulmonary hypertension remains unclear. Mitochondrial supercomplexes are large respiratory assemblies of individual electron transport chain complexes which can promote more efficient respiration. In this study, we examined pulmonary hypertension and exercise-induced changes in skeletal muscle electron transport chain protein expression and supercomplex assembly. Pulmonary arterial hypertension was induced in rats with the Sugen/Hypoxia model (10% FiO2, three weeks). Pulmonary arterial hypertension and control rats were assigned to an exercise training protocol group or kept sedentary for one month. Cardiac function and V c O2 max were assessed at the beginning and end of exercise training. Red (Type 1-oxidative muscle) and white (Type 2-glycolytic muscle) gastrocnemius were assessed for changes in electron transport chain complex protein expression and supercomplex assembly via SDS- and Blue Native-PAGE. Results showed that pulmonary arterial hypertension caused a significant decrease in V c O2 max via treadmill testing that was improved with exercise (P < 0.01). Decreases in cardiac output and pulmonary acceleration time due to pulmonary arterial hypertension were not improved with exercise. Pulmonary arterial hypertension reduced expression in individual electron transport chain complex protein expression (NDUFB8 (CI), SDHB (CII), Cox IV (CIV), but not UQCRC2 (CIII), or ATP5a (CV)) in red gastrocnemius muscle. Both red gastrocnemius and white gastrocnemius electron transport chain expression was unaffected by exercise. However, non-denaturing Blue Native-PAGE analysis of mitochondrial supercomplexes demonstrated increases with exercise training in pulmonary arterial hypertension in the red gastrocnemius but not white gastrocnemius muscle. Pulmonary arterial hypertension-induced exercise intolerance is improved with exercise and is associated with muscle type specific alteration in mitochondrial supercomplex assembly and expression of mitochondrial electron transport chain proteins.

4.
Circ Heart Fail ; 12(11): e005819, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31707802

RESUMO

BACKGROUND: Angiotensin II has been implicated in maladaptive right ventricular (RV) hypertrophy and fibrosis associated with pulmonary hypertension (PH). Natriuretic peptides decrease RV afterload by promoting pulmonary vasodilation and inhibiting vascular remodeling but are degraded by neprilysin. We hypothesized that angiotensin receptor blocker and neprilysin inhibitor, sacubitril/valsartan (Sac/Val, LCZ696), will attenuate PH and improve RV function by targeting both pulmonary vascular and RV remodeling. METHODS: PH was induced in rats using the SU5416/hypoxia model (Su/Hx), followed by 6-week treatment with placebo, Sac/Val, or Val alone. There were 4 groups: CON-normoxic animals with placebo (n=18); PH-Su/Hx rats+placebo (n=34); PH+Sac/Val (N=24); and PH+Val (n=16). RESULTS: In animals with PH, treatment with Sac/Val but not Val resulted in significant reduction in RV pressure (mm Hg: PH: 62±4, PH+Sac/Val: 46±5), hypertrophy (RV/LV+S: PH: 0.74±0.06, PH+Sac/Val: 0.46±0.06), collagen content (µg/50 µg protein: PH: 8.2±0.3, PH+Sac/Val: 6.4±0.4), pressures and improvement in RVs (mm/s: PH: 31.2±1.8, PH+Sac/Val: 43.1±3.6) compared with placebo. This was associated with reduced pulmonary vascular wall thickness, increased lung levels of ANP (atrial natriuretic peptide), BNP (brain-type natriuretic peptide), and cGMP, and decreased plasma endothelin-1 compared with PH alone. Also, PH+Sac/Val animals had altered expression of PKC isozymes in RV tissue compared with PH alone. CONCLUSIONS: Sac/Val reduces pulmonary pressures, vascular remodeling, as well as RV hypertrophy in a rat model of PH and may be appropriate for treatment of pulmonary hypertension and RV dysfunction.


Assuntos
Aminobutiratos/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Inibidores de Proteases/farmacologia , Artéria Pulmonar/efeitos dos fármacos , Tetrazóis/farmacologia , Animais , Compostos de Bifenilo , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Fibrose , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Masculino , Neprilisina/antagonistas & inibidores , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Valsartana , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA