Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(45): 9496-9502, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33138367

RESUMO

Computations based on density functional theory (DFT) are transforming various aspects of materials research and discovery. However, the effort required to solve the central equation of DFT, namely the Kohn-Sham equation, which remains a major obstacle for studying large systems with hundreds of atoms in a practical amount of time with routine computational resources. Here, we propose a deep learning architecture that systematically learns the input-output behavior of the Kohn-Sham equation and predicts the electronic density of states, a primary output of DFT calculations, with unprecedented speed and chemical accuracy. The algorithm also adapts and progressively improves in predictive power and versatility as it is exposed to new diverse atomic configurations. We demonstrate this capability for a diverse set of carbon allotropes spanning a large configurational and phase space. The electronic density of states, along with the electronic charge density, may be used downstream to predict a variety of materials properties, bypassing the Kohn-Sham equation, leading to an ultrafast and high-fidelity DFT emulator.

2.
Nat Commun ; 15(1): 6107, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030220

RESUMO

Electrostatic capacitors play a crucial role as energy storage devices in modern electrical systems. Energy density, the figure of merit for electrostatic capacitors, is primarily determined by the choice of dielectric material. Most industry-grade polymer dielectrics are flexible polyolefins or rigid aromatics, possessing high energy density or high thermal stability, but not both. Here, we employ artificial intelligence (AI), established polymer chemistry, and molecular engineering to discover a suite of dielectrics in the polynorbornene and polyimide families. Many of the discovered dielectrics exhibit high thermal stability and high energy density over a broad temperature range. One such dielectric displays an energy density of 8.3 J cc-1 at 200 °C, a value 11 × that of any commercially available polymer dielectric at this temperature. We also evaluate pathways to further enhance the polynorbornene and polyimide families, enabling these capacitors to perform well in demanding applications (e.g., aerospace) while being environmentally sustainable. These findings expand the potential applications of electrostatic capacitors within the 85-200 °C temperature range, at which there is presently no good commercial solution. More broadly, this research demonstrates the impact of AI on chemical structure generation and property prediction, highlighting the potential for materials design advancement beyond electrostatic capacitors.

3.
Nat Commun ; 14(1): 4099, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433807

RESUMO

Polymers are a vital part of everyday life. Their chemical universe is so large that it presents unprecedented opportunities as well as significant challenges to identify suitable application-specific candidates. We present a complete end-to-end machine-driven polymer informatics pipeline that can search this space for suitable candidates at unprecedented speed and accuracy. This pipeline includes a polymer chemical fingerprinting capability called polyBERT (inspired by Natural Language Processing concepts), and a multitask learning approach that maps the polyBERT fingerprints to a host of properties. polyBERT is a chemical linguist that treats the chemical structure of polymers as a chemical language. The present approach outstrips the best presently available concepts for polymer property prediction based on handcrafted fingerprint schemes in speed by two orders of magnitude while preserving accuracy, thus making it a strong candidate for deployment in scalable architectures including cloud infrastructures.

4.
Chem Mater ; 35(4): 1560-1567, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36873627

RESUMO

Artificial intelligence-based methods are becoming increasingly effective at screening libraries of polymers down to a selection that is manageable for experimental inquiry. The vast majority of presently adopted approaches for polymer screening rely on handcrafted chemostructural features extracted from polymer repeat units-a burdensome task as polymer libraries, which approximate the polymer chemical search space, progressively grow over time. Here, we demonstrate that directly "machine learning" important features from a polymer repeat unit is a cheap and viable alternative to extracting expensive features by hand. Our approach-based on graph neural networks, multitask learning, and other advanced deep learning techniques-speeds up feature extraction by 1-2 orders of magnitude relative to presently adopted handcrafted methods without compromising model accuracy for a variety of polymer property prediction tasks. We anticipate that our approach, which unlocks the screening of truly massive polymer libraries at scale, will enable more sophisticated and large scale screening technologies in the field of polymer informatics.

5.
Patterns (N Y) ; 2(4): 100238, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33982028

RESUMO

Modern data-driven tools are transforming application-specific polymer development cycles. Surrogate models that can be trained to predict properties of polymers are becoming commonplace. Nevertheless, these models do not utilize the full breadth of the knowledge available in datasets, which are oftentimes sparse; inherent correlations between different property datasets are disregarded. Here, we demonstrate the potency of multi-task learning approaches that exploit such inherent correlations effectively. Data pertaining to 36 different properties of over 13,000 polymers are supplied to deep-learning multi-task architectures. Compared to conventional single-task learning models, the multi-task approach is accurate, efficient, scalable, and amenable to transfer learning as more data on the same or different properties become available. Moreover, these models are interpretable. Chemical rules, that explain how certain features control trends in property values, emerge from the present work, paving the way for the rational design of application specific polymers meeting desired property or performance objectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA